Artin Formalism and BSD

Edwina Aylward

Aug 2, 2024

Let *E* be an elliptic curve defined over a number field *K*. Consider F/K a finite Galois extension with G = Gal(F/K). *G* acts on the points of E(F) by

$$(x,y)\mapsto (\sigma(x),\sigma(y)), \quad \sigma\in G.$$

Thus $\rho = E(F) \otimes_{\mathbb{Z}} \mathbb{C}$ is a representation of G, with dim $\rho = \operatorname{rk} E/F$.

For $H \leq G$, $\operatorname{rk} E/F^H = \dim \rho^H$.

$$\dim \rho^{H} = \langle \mathbb{1}, \operatorname{Res}_{H}^{G} \rho \rangle_{H} = \langle \operatorname{Ind}_{H}^{G} \mathbb{1}, \rho \rangle_{G}.$$

Thus $\operatorname{rk} E/F^H = \langle \mathbb{C}[G/H], \rho \rangle.$

For example, let $C_p = \operatorname{Gal}(F/K)$ be an extension of number fields, E/Kan elliptic curve and $\rho = E(F) \otimes_{\mathbb{Z}} \mathbb{C}$. Let $\{1, \chi_1, \ldots, \chi_{p-1}\}$ be the distinct characters of G, where χ_i for $i = 1, \ldots p - 1$ are of order p. Then

$$\operatorname{rk} E/K = \langle \mathbb{C}[G/G], \rho \rangle = \langle \mathbb{1}, \rho \rangle, \operatorname{rk} E/F = \langle \mathbb{C}[G/C_1], \rho \rangle = \langle \mathbb{1} \oplus \chi_1 \oplus \cdots \oplus \chi_{p-1}, \rho \rangle.$$

Therefore

$$\operatorname{rk} E/F - \operatorname{rk} E/K = \langle \chi_1 \oplus \cdots \chi_{p-1}, \rho \rangle$$

$$\implies \operatorname{rk} E/F \equiv \operatorname{rk} E/K \pmod{p-1}$$

L-functions

Elliptic curve
$$E/K \rightsquigarrow L$$
-function $L(E/K, s)$

with Euler product

$$L(E/K,s) = \prod_{\mathfrak{p} \subset \mathcal{O}_K} \det(1 - N(\mathfrak{p})^{-s} \operatorname{Frob}_{\mathfrak{p}}^{-1} | (V_I E^*)^{I_{\mathfrak{p}}})^{-1}.$$

Let $G = \operatorname{Gal}(F/K)$ and τ a representation of G.

$$E/K$$
 and $\tau \rightsquigarrow$ twisted L-function $L(E/K, \tau, s)$

with Euler product

$$L(E/K,\tau,s) = \prod_{\mathfrak{p} \subset \mathcal{O}_K} \det(1-N(\mathfrak{p})^{-s}\operatorname{Frob}_{\mathfrak{p}}^{-1} | (\tau \otimes V_I E^*)^{I_{\mathfrak{p}}})^{-1}.$$

These *L*-functions satisfy the following properties, known as *Artin formalism*

Conjecture (BSD 1)

If E is an elliptic curve over a number field K, then

$$\operatorname{rk} E/K = \operatorname{ord}_{s=1} L(E/K, s).$$

Conjecture (BSD Analogue for twists, [Deligne-Gross])

Let *E* be an elliptic curve over a number field *K*. If F/K is a finite Galois extension of number fields with G = Gal(F/K), then

$$\langle \tau, E(F) \otimes_{\mathbb{Z}} \mathbb{C} \rangle = \operatorname{ord}_{s=1} L(E/K, \tau, s)$$

for τ a representation of G.

Conjecture (BSD 2)

Let *E* be an elliptic curve over a number field *K*. The group $\coprod_{E/K}$ has finite order and the leading term of the Taylor series at s = 1 of the *L*-function is

$$\lim_{s \to 1} \frac{L(E/K, s)}{(s-1)^r} \cdot \frac{\sqrt{|\Delta_K|}}{\Omega_+(E)^{r_1+r_2} |\Omega_-(E)|^{r_2}} = \underbrace{\frac{\operatorname{Reg}_{E/K} |\operatorname{III}_{E/K}| C_{E/K}}{|E(K)_{\operatorname{tors}}|^2}}_{:=\operatorname{BSD}(E/K)}$$

If E/K is semistable

$$C_{E/K} = \prod_{\mathfrak{p}\subset \mathcal{O}_K} c_\mathfrak{p}(E/K),$$

where $c_{\mathfrak{p}}(E/K) = [E(K_{\mathfrak{p}}): E_0(K_{\mathfrak{p}})]$ is the local Tamagawa number. Else, there are some extra factors at the primes of additive reduction.

Question: Can we factor BSD(E/K) according to Artin representations?

Conjecture (BSD-term conjecture, [Dokchitser-Evans-Wiersema 21])

Let E/\mathbb{Q} be an elliptic curve over the rationals, and $G = \operatorname{Gal}(F/\mathbb{Q})$. For each representation τ of G there exists an invariant $\operatorname{BSD}(E,\tau) \in \mathbb{C}^{\times}$ such that:

- $\mathrm{BSD}(E, \tau \oplus \tau') = \mathrm{BSD}(E, \tau) \mathrm{BSD}(E, \tau')$, where τ' is a rep. of G,
- **2** BSD $(E, \mathbb{C}[G/H]) = BSD(E/F^H)$ for $H \leq G$.

If in addition $\langle au, E(F) \otimes_{\mathbb{Z}} \mathbb{C}
angle = 0$, then

$$\mathrm{BSD}(\mathsf{E},\tau^\mathfrak{g}) = \mathrm{BSD}(\mathsf{E},\tau)^\mathfrak{g}$$
 for $\mathfrak{g} \in \mathrm{Gal}(\mathbb{Q}(\tau)/\mathbb{Q}).$

D_{10} example

Consider
$$G = \operatorname{Gal}(F/\mathbb{Q}) = D_{10} = \langle x, y \mid y^2 = x^5 = e, yxy = x^{-1} \rangle.$$

$$\frac{\begin{vmatrix} e & x & yx & yx^2 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \varepsilon & 1 & -1 & 1 & 1 \\ \tau & 2 & 0 & \frac{-1-\sqrt{5}}{2} & \frac{-1+\sqrt{5}}{2} \\ \tau^{\sigma} & 2 & 0 & \frac{-1+\sqrt{5}}{2} & \frac{-1-\sqrt{5}}{2} \end{vmatrix}$$

Table: Character table of G with $\operatorname{Gal}(\mathbb{Q}(\sqrt{5})/\mathbb{Q}) = \langle \sigma \rangle$.

One has $\mathbb{C}[G/C_2] \simeq \mathbb{C}[G/G] \oplus \tau \oplus \tau^{\sigma}$. Let $L = F^{C_2}$.

Let *E* be an elliptic curve over \mathbb{Q} such that $\langle E(F) \otimes_{\mathbb{Z}} \mathbb{C}, \tau \rangle = 0$. Assuming the BSD-term conjecture,

$$\frac{\mathrm{BSD}(E/L)}{\mathrm{BSD}(E/\mathbb{Q})} = \mathrm{BSD}(E,\tau)BSD(E,\tau^{\sigma}) = N(\mathrm{BSD}(E,\tau)),$$

hence is of the form $x^2 - 5y^2$ for $x, y \in \mathbb{Q}$.

D_{10} example

Suppose $\operatorname{rk} E/F = 0$. Then

$$\frac{\mathrm{BSD}(E/L)}{\mathrm{BSD}(E/\mathbb{Q})} = \frac{|E(\mathbb{Q})_{\mathrm{tors}}|^2 |\mathrm{III}_{E/L}| C_{E/L}}{|E(L)_{\mathrm{tors}}|^2 |\mathrm{III}_{E/\mathbb{Q}}| C_{E/\mathbb{Q}}} \equiv \frac{C_{E/L}}{C_{E/\mathbb{Q}}} \pmod{\mathbb{Q}^{\times 2}}$$

Suppose *E* has semistable reduction over \mathbb{Q} . Then $\frac{C_{E/L}}{C_{E/\mathbb{Q}}} = \prod_{\rho} \frac{\prod_{w|\rho} c_w(E/L)}{c_{\rho}(E/\mathbb{Q})}.$

- If E/\mathbb{Q}_p has good reduction, $\frac{\prod_{w|p} c_w(E/L)}{c_p(E/\mathbb{Q})} = 1$.
- If E/\mathbb{Q}_p has split multiplicative reduction with $c_p(E/\mathbb{Q}) = n$,

$$\frac{\prod_{w|p} c_w(E/L)}{c_p(E/\mathbb{Q})} = \frac{\prod_{w|p} e_{w/p} \cdot n}{n}.$$

- If p is totally ramified, this is $5 = (2 + \sqrt{5})(2 \sqrt{5})(-5)$,
- If p has decomp. group C_5 and is unramified, this is 1,
- If p has decomp. group = inertia group = C_2 , this is $(2n)^2$.

D_{24} example

Consider $G = \operatorname{Gal}(F/\mathbb{Q}) = D_{24}$. This has two Galois conjugate 2-dim. irreps. τ , τ^{σ} with $\mathbb{Q}(\tau) = \mathbb{Q}(\sqrt{3})$. We have

 $\mathbb{C}[G/C_2] \oplus \mathbb{C}[G/D_6] \simeq \mathbb{C}[G/C_2 \times C_2] \oplus \mathbb{C}[G/S_3] \oplus \tau \oplus \tau^{\sigma}.$

If E/\mathbb{Q} satisfies $\langle E(F) \otimes_{\mathbb{Z}} \mathbb{C}, \tau \rangle = 0$ and we assume that $\operatorname{rk} E/F = 0$, the conjecture implies that

$$\frac{\operatorname{BSD}(E/F^{C_2})\operatorname{BSD}(E/F^{D_6})}{\operatorname{BSD}(E/F^{C_2}\times C_2)\operatorname{BSD}(E/F^{S_3})} = x^2 - 3y^2, \quad x, y \in \mathbb{Q}.$$

But if E/\mathbb{Q} has additive reduction of Type II at 11 and good reduction elsewhere, this product is $11 \cdot \Box$, which is **not** a norm from $\mathbb{Q}(\sqrt{3})$.

Thus our assumption that $\operatorname{rk} E/F = 0$ is false and so $\operatorname{rk} E/F > 0$. (In this case one can use root numbers to show that the rank must grow. Assuming F/\mathbb{Q} is totally real and adding the product of regulators, one gets $22 \cdot \Box = (5 + \sqrt{3})(5 - \sqrt{3}) \cdot \Box$.)

Edwina Aylward

Theorem (Norm Relations Test, [Dokchitser-Evans-Wiersema 21])

Suppose the BSD-term conjecture holds. Consider E/\mathbb{Q} , and F/\mathbb{Q} with $G = \operatorname{Gal}(F/\mathbb{Q})$. Let ρ be a rep. of G with $\mathbb{Q}(\rho) = \mathbb{Q}(\sqrt{D})$ and $\operatorname{Gal}(\mathbb{Q}(\sqrt{D})/\mathbb{Q}) = \langle \sigma \rangle$. Consider

$$(\rho \oplus \rho^{\sigma})^{\oplus m} \oplus \bigoplus_{j} \mathbb{C}[G/H'_{j}] \simeq \bigoplus_{i} \mathbb{C}[G/H_{i}]$$

for some $m\geq 1$ and $H_i, H_j'\leq G.$ If

$$\frac{\prod_{i} C_{E/F^{H_{i}}}}{\prod_{j} C_{E/F^{H_{j}'}}} \notin \begin{cases} (\mathbb{Q})^{\times 2} & m \text{ even} \\ N_{\mathbb{Q}(\sqrt{D})/\mathbb{Q}}(\mathbb{Q}(\sqrt{D})^{\times}) & m \text{ odd,} \end{cases}$$

then $\operatorname{rk} E/F > 0$.

11/13

- With Albert Lopez Bruch, we've shown cases where this test cannot be used to force positive rank. This is the case when G is cyclic or of odd order.
- We're currently working on proving that once one adds in the appropriate product of regulators, one does get a norm from the relevant quadratic field.
- We are trying to prove this algebraically, assuming BSD and the parity conjecture for twists. This contrasts the work of Dokchitser-Evans-Wiersema where this is a consequence of their BSD-term conjecture.

Thank you!