Reduction types of genus 2 curves

WINGS 2025

Edwina Aylward

April 1, 2025

Joint work with Vladimir Dokchitser and Elvira Lupoian.

Elliptic curves

Let E be an elliptic curve over a number field K. At a prime p, E has either

- Semistable reduction: good or multiplicative,
- Non-semistable reduction: additive.

Deligne-Mumford theorem: Non-semistable reduction becomes semistable after a finite ramified extension.

Example

Let $E: y^2 = x^3 - p^2$. This has additive reduction at p. Attains good reduction at the prime above p in $\mathbb{Q}(\sqrt[3]{p})$.

Additive reduction can be split into two types: potentially good reduction and potentially multiplicative reduction.

Definition (Reduction type)

Let C/K be a (nice) curve over a number field K. The **reduction type** of C at a prime \mathfrak{p} of K is the structure of the special fibre of the minimal regular model of C over $K_{\mathfrak{p}}^{nr}$.

E.g. for elliptic curves these are known as Kodaira types, and they come in ten families.

Art in mathematics

Kodaira symbol	I ₀	$\begin{matrix} \mathrm{I}_n \ (n \geq 1) \end{matrix}$	II	III	IV	I_0^{\star}	$\begin{matrix} \mathbf{I}_n^\star \\ (n \ge 1) \end{matrix}$	IV*	III*	11.
Special fiber Č (The numbers indicate multi- plicities)	0		\sum_{1}	1			$\begin{array}{c}1\\1\\2\\2\\1\end{array}$	$\begin{array}{c}1 \\ 1 \\ 1 \\ 2 \\ $	$1 \frac{2}{2} \frac{3}{4}$ $1 \frac{2}{2} \frac{3}{3}$	$ \begin{array}{c c} & 2 & 1 \\ & 3 & 1 \\ & 5 & 6 & 4 \\ & 6 & 4 \\ & 2 & 4 \end{array} $
m = number of irred. components	1	n	1	2	3	5	5+n	7	8	9
$E(K)/E_0(K)$ $\cong \tilde{\mathcal{E}}(k)/\tilde{\mathcal{E}}^0(k)$	(0)	$\frac{\mathbb{Z}}{n\mathbb{Z}}$	(0)	$\frac{\mathbb{Z}}{2\mathbb{Z}}$	$\frac{\mathbb{Z}}{3\mathbb{Z}}$	$\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$	$\frac{\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}}{\frac{n \text{ even}}{\mathbb{Z}}}$ $\frac{\mathbb{Z}}{4\mathbb{Z}}$ <i>n</i> odd	$\frac{\mathbb{Z}}{3\mathbb{Z}}$	$\frac{\mathbb{Z}}{2\mathbb{Z}}$	(0)
$\tilde{\mathcal{E}}^{0}(k)$	$\tilde{E}(k)$	<i>k</i> *	k^+	k^+	k^+	k^+	k^+	k^+	k^+	k^+
Entries below this line only valid for $char(k) = p$ as indicated										
$\operatorname{char}(k) = p$			$p \neq 2, 3$	$p \neq 2$	$p \neq 3$	$p \neq 2$	$p \neq 2$	$p \neq 3$	$p \neq 2$	$p\neq 2,3$
$v(\mathcal{D}_{E/K})$ (discriminant)	0	n	2	3	4	6	6+n	8	9	10
$\begin{array}{c} f(E/K) \\ (\text{conductor}) \end{array}$	0	1	2	2	2	2	2	2	2	2
behavior of j	$v(j) \ge 0$	v(j) = -n	$\tilde{j} = 0$	$\tilde{j} = 1728$	$\tilde{j} = 0$	$v(j) \ge 0$	v(j) = -n	$\tilde{j} = 0$	$\tilde{j} = 1728$	$\tilde{j} = 0$

Table 4.1: A Table of Reduction Types

Tate's algorithm

For elliptic curves, one can determine the reduction type via Tate's algorithm.

Corollary (of Tate's algorithm)

Let E/K be an elliptic curve, \mathfrak{p} a prime of K such that $K_{\mathfrak{p}}$ has residue characteristic ≥ 5 . Then the reduction type of E at \mathfrak{p} is determined by $v_{\mathfrak{p}}(\Delta_E)$ and $v_{\mathfrak{p}}(j_E)$.

Easy to see how the reduction type changes in ramified extensions: look at $v_{\mathfrak{p}}(\Delta_E)$ mod 12 and $v_{\mathfrak{p}}(j_E)$.

Example

 $E: y^2 = x^3 - p^2$ has $v_p(\Delta_E) = 4 \implies$ type IV reduction at p. Consider an extension K/\mathbb{Q} , \mathfrak{p} a prime above p with ramification degree e.

Reduction type of
$$E$$
 at $\mathfrak{p} = \begin{cases} \mathsf{Type} \ \mathsf{I}_0 & e \equiv 0 \mod 3, \\ \mathsf{Type} \ \mathsf{IV} & e \equiv 1 \mod 3, \\ \mathsf{Type} \ \mathsf{IV}^* & e \equiv 2 \mod 3. \end{cases}$

Higher genus curves

- As the genus grows, so does the number of reduction types.
- For genus 2 curves, reduction types occur in 104 families. For genus 3 curves, there's 1901 families!
- Reduction types of genus 2 curves have been classified by Namikawa and Ueno.
- Liu and Mestre: determine the reduction type of a genus 2 curve from the Igusa invariants (+ some other invariants). But this doesn't illuminate how the reduction type changes in ramified extensions.
- All genus 2 curves are hyperelliptic, i.e. can be expressed as the smooth projective curve associated to the affine equation

$$y^2 = f(x)$$

where f(x) has degree 5/6.

• Our aim: Use cluster pictures to understand reduction type.

Cluster pictures

Let $y^2 = f(x)$ be a hyperelliptic curve. Its associated *cluster picture* displays the *p*-adic distances between the roots of f(x).

Example

Let $C: y^2 = (x^2 - p)((x - 1)^2 + p^2)((x + 1)^2 - p^2)$ over \mathbb{Q}_p . The roots of f are $\mathcal{R} = \{\pm \sqrt{p}, 1 \pm ip, -1 \pm p\}.$

One has

$$\begin{array}{ll} v(\sqrt{p}-(-\sqrt{p}))=\frac{1}{2}, & v(\pm\sqrt{p}-(1\pm ip))=0, & v(\pm\sqrt{p}-(-1\pm p))=0, \\ v(1+ip-(1-ip))=1, & v(1\pm ip-(-1\pm p))=0, & v(-1+p-(-1-p))=1. \end{array}$$

The cluster picture is

Cluster pictures

Definition

Let p be an odd prime, K a p-adic field and C/K a hyperelliptic curve given by

$$y^2 = f(x) = c(x - a_1)(x - a_2) \cdots (x - a_n)$$

Let $\mathcal{R} = \{a_1, \dots a_n\}$ denote the set of roots of f. Let \mathfrak{p} be the unique prime of $\mathcal{O}_{\mathcal{K}}$. We define the cluster picture $\Sigma_{\mathfrak{p}}$ associated to C with respect to \mathfrak{p} as

$$\Sigma_{\mathfrak{p}} := \{\mathfrak{s} \in \mathcal{P}(\mathcal{R}) | \ \mathfrak{s} = D_{z,d} \cap \mathcal{R} \text{ for some } z \in \overline{\mathsf{K}}, \ d \in \mathbb{Q}\},$$

where $D_{z,d} := \{x \in \overline{K} \mid v_{\mathfrak{p}}(x-z) \geq d\}.$

i.e. $\Sigma_{\mathfrak{p}}$ are the subsets of $\mathcal R$ which are cut out by bounded p-adic discs.

Theorem (Farragi-Nowell)

Let K be a p-adic field with p odd. Let $C: y^2 = f(x)$ be a hyperelliptic curve over K with tame potentially semistable reduction. Then the reduction type is determined by the cluster picture of C and the valuation of the leading coefficient of f.

Genus 2 semistable reduction types

N, M, L €ℤ Reduction types of genus 2 curves

Genus 2 semistable reduction types

Potentially good reduction

For example, if $C: y^2 = f(x)$ has deg f = 6 and potentially good reduction, then its cluster picture must be of the form

One determines the reduction type in the first case by $(a \mod 1, v(c_f) \mod 2)$, and in the second case by $b \mod 2$.

- Group reduction types into those with same potential stable model.
- For each grouping, describe the possible cluster pictures that can occur.
- Choose a canonical cluster picture for each reduction type, in a way that behaves nicely with taking ramified extensions.
- Tabulate it!

The End

Thank you!