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1 Introduction

This is the second talk of the Global Class Field Theory Study Group. The material for today
covers Sections 3 and 4 of Venkatesh’s lecture notes. Section 3 discusses the broad strategies that
will be implemented throughout the notes to prove the various elements of class field theory. Section
4 proves a fundamental result: that when a number field k has class number ¢; = 1, it admits no
non-trivial unramified abelian extensions.

For this talk, I will cover Section 4 first. We will run through the proof regarding unramified
extensions, which, while technically involved, is quite elementary in its logic. I will conclude by
discussing the ideas in Section 3.

(I'm doing this for a few reasons. I didn’t want to chop §4 at a point, so doing it first ensures
we finish it. Also §3 is kinda hand wavy).

Remark: Whenever I say ideal, I will mean a non-zero fractional ideal. Also, all my norms are
relative norms.

2 8§84: Unramified Extensions and Class Number One

The goal of §4 is to show that for a number field k, if there exists a cyclic unramified f-extension
K/k (£ prime), then Cy must be divisible by ¢. We proceed by showing that the capitulation
kernel ker(iy), where i : C — Ck is the ideal class extension map, is non-trivial.

2.1 §4.1: Ideals and Units

If a class [a] € ker(ix), then its extension to K is principal, so aOg = (y) for some y € K*. Since a
originates in the base field k, the ideal (y) must be fixed under the Galois action (o) = Gal(K/k).
Therefore:

W7 =) = W) =0k=(u"")

This implies that !~ is a unit of K* of norm 1.

Conversely, by Hilbert Theorem 90, if # € K* is a unit of norm 1, then # = '~ for some
y € K*. Then (y)? = (y), meaning (y) is necessarily extended from k.

(In fact, every o-fixed ideal is extended from k because K/k is unramified. We can see this
through the factorization:

a= Hpnpv My = N (p)
b



For PNOy, = p, the primes above p form a single (o) orbit. Thus, the ideal factors as p-Ox = H‘WP Xz,
and all such primes must factor into a with equal exponents.)

Note that (y) is the extension of a principal ideal of k if and only if y € k*Ug, which is equivalent
to saying 6 is the image of a unit of K under 1—o0, i.e., 8 € (1—0)Ug. We thus have an isomorphism:

{norm 1 units of Ux}

(%) ker(Cj — Ck) = = olx

defined by the mapping (a — (y)Og) — y'=?. To show ¢, > 1, we must show that (1 — o)Ux C
{norm 1 units of Uk}, meaning Hilbert 90 fails for units.

2.2 §4.2: Reduction to the Relative Unit Group

We prove the RHS of (x) is non-trivial assuming ¢y ¢ k (so excluding ¢ = 2). Let the relative unit
group be Uy := Uk /Uy. The norm map N : Ug — Uy induces N : Ug — Uk/Uﬁ. The quotient
map induces a surjection:

norm 1 units of Ux norm 1 elements of Uk

(x%) (1-0)Uk - (1—-0)Ug

This map is also injective: if z € Uy is in the kernel, then x = 2!~y for 2,y € Uk, and N(z) =
1=N(y)=y" = y=1as( ¢ k. The right-hand side of (*x) has size:

%) Uk : (1 — UZUK]
#image N
The image size can also be expressed as:
#(Uk/Up)  _ #(Us/Up)

image N = L —
Himag [Un/UL: NUx] ~ [Uk : NUK]
Since ¢ ¢ k, Dirichlet’s Unit Theorem gives #(Uy/Uf) = €=~ where ro, is the number of
Archimedean places.

2.3 §4.3: Galois Module Structure

The upshot of passing to Uy is that it is a module of O = Z[o]/(1 + o + --- + o*~!). The map
o +— (g identifies O with Z[(;]. Thus O is a Dedekind domain, and 1 — o € O generates the unique
prime ideal [ above £. By the structure theorem:

Uk a1 @ - @a, ®0/b1 - ®O/by

where a;,b; are non-zero fractional ideals. Calculating ranks: rk(Uy) = ro — 1 and rk(Uk) = [K :
klreo — 1 = froo — 1 (as K/k is unramified). This implies 7k(U) = (¢ — 1)roo. Since rk(0) = £ —1,
we must have r = r.

Uk has no (-torsion. Indeed, if y € Ux \ U}, satisfied y* € k, then T* — y* € k[T] is irreducible
and K/k is Galois, so K contains all roots = (; € K = (; € k (by degree considerations), a

contradiction. It follows that (1 — o) and b; are coprime, so:
U Too Too _ _
— = Pa/l-0)u =P O/ = F) = [Ux:(1-0)Ux] =

Thus, (%) > 1, proving the capitulation kernel is non-trivial.



2.4 Conclusion
Corollary (Hilbert Theorem 94): If there exists a cyclic unramified extension K/k of prime
degree ¢, then the class number of k is divisible by /.
We have shown, in the context of the above corollary, that
[norm 1 units of Uk : (1 — 0)Uk]
[Ug : NUK]

implying #ker(Cy, — Ck) = [Uy : NUg] - ¢. Note that it is the unit showcasing the failure of
Hilbert’s theorem 90 that gives us an element of this kernel of order ¢.

=/

This formula showcases that the fewer the units that are norms, the more ideal classes that
capitulate. The formula also holds when K/k is a cyclic unramified extension of composite degree,
as proved in §5 (with ¢ replaced by [K: k]).

Example 2.1. Let £ = Q(v/=5) and K = Q(4,v/5). The extension K/k is a cyclic unramified
extension of degree 2. Let (o) = Gal(K/k), where o is the automorphism fixing iv/5 and mapping
i— —i and V5 — —/5.

The ideal p = (2, 14++/—5) is non-principal in Oy. However, its extension to K becomes principal:

POk = (2,1 4+iV5)Ox = (1+14)Ok.

Let y = 14+ 4. Then y'=° = i. Thus, 7 is a unit in Ux with relative norm 1. However, i is
not contained in (1 — o)Ugk. That is, there exists no unit v € Uk such that u/o(u) = i. This
demonstrates that Hilbert’s Theorem 90 fails for units in this extension.

3 §3: The general strategy

Let K/k be a finite abelian extension. We saw last week that
[Cy: NECK] < [K : K].

This inequality bounds the size of NV, ,f Ck from below. We want to also bound it from above.

Idea of strategy

Suppose K /k is cyclic with Galois group generated by . Then
(1-0)Ck = {lal[a”] " | [a] € Ck}
satisfies NX((1 —0)Ck) = 1.
. Showing (1 — 0)Cf is large controls N*Ck from above.
Since Ck/C% =+ (1 — 0)Ck, we can equivalently show that C is small.
Thus we will be interested in analysing C'%, and will end up with formulae of the shape

#C} - [[ramif. indices
[K : k]

where O}, (C%)*,uj, are variants on Cy, C%, ug.

= #(C%)" x index of norms in uj,

The aim of establishing such formulae is to shift the burden of proving that not too many ideal
classes are norms, to showing that not too many elements are norms.

We established a simple version of this shape already.



