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In this note, we try to motivate étale cohomology, and introduce étale morphisms, which
will be needed to define étale cohomology in the next talk. At the end there is some discussion
on the similarities of étale cohomology with Galois cohomology. Throughout we will recall some
necessary algebraic geometry concepts.

For sources, I consulted Chapters 3,6 of [Poo17], [Con16], the stacks project [Aut] for random
definitions, Milne’s notes on étale cohomology [Mil13], and lastly math overflow.

1 Why study étale cohomology?

1.1 Slandering the Zariski topology

A main motivation for introducing étale cohomology was to construct a Weil cohomology theory
in order to prove the Weil conjectures, though I won’t say anything on this.

Another means of motivating étale cohomology is by explaining the shortcomings of usual
sheaf cohomology for schemes. Let X be a scheme, and C the category with objects the
Zariski opens of X and morphisms given by inclusions of open sets. Recall that a sheaf is a
functor F : Cop → Set (or Grp etc) satisfying some additional properties. One obtains sheaf
cohomology by resolving the global sections functor

F 7→ F(X)

which is left exact, but not right exact.
The problem with sheaf cohomology is that it too often gives us uninteresting cohomology.

Consider the following example:

Example 1.1 (Flasque sheaves). Let X be an irreducible variety over C. Consider the constant
sheaf A for some abelian group A. Now irreducibility implies that for U ⊂ X open and non-
empty, A(U) = A (since U is connected). Then A(∅) = 0 and so restriction maps are always
surjective. This means that A is flasque, and general lore tells us that H i(X,A) = 0 for i > 0.

On the other hand, if X is a smooth projective complex variety, then X(C) is a complex
manifold, and one has that H2 dimX

sing (X(C),Z) = Z. ♢

The thing that one is meant to say went wrong in this example is that the Zariski topology
has too few open sets (and they’re too big). The insight of Grothendieck was that by redefining
our idea of open sets, one could obtain a better cohomology.
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1.2 Motivation via homological algebra

Let G be a finite group, M a G-module. Recall our recipe for computing H i(G,M):

1. Compute a projective resolution of Z,

2. apply HomZ[G](−,M),

3. take homology of the chain.

This is the recipe for computing Ext groups, which are "the derived functors of Hom". One
has H∗(G,M) = Ext∗Z[G](Z,M) where Z is the trivial Z[G]-module. The point is that group
cohomology emerges by rectifying the failure of right exactness for the functor B 7→ BG =
HomZ[G](Z, B), where B is a Z[G]-module.

Other cohomology theories can be described as Ext groups also. For example, if X is a
topological space, then the sheaf cohomology of a sheaf A of abelian groups on X can be
expressed as H∗(X,A) = Ext∗(ZX , A). Here we are working in the abelian category of sheaves
of abelian groups on X, and ZX is the sheaf of locally constant Z-valued functions. This
time you took an injective resolution of your sheaf to compute sheaf cohomology, but this is
just another way to compute Ext groups (the point being your category may not have enough
projectives).

Ultimately, we will be able to write étale cohomology as Ext groups: H∗(Xét,−) = ExtX(Z,−)
(we take derived functors of the global sections functor, as in sheaf cohomology). Perhaps this
gives some reasoning for why when X = Spec k for k a field, the étale cohomology groups are
isomorphic to H∗(Gk, F ) (for a certain Gk module F ). We will see this is the case because we
are resolving essentially the same functor.

2 Étale morphisms
The first step in defining étale cohomology is by replacing the category of open sets of a scheme
X with the category Ét(X).

Definition 2.1. For a scheme X, Ét(X) is the category whose objects are étale morphisms
U → X where U is a scheme, and whose morphisms are X-morphisms, i.e. such that the
following commutes

U V

X

To understand that, we first need to learn what étale morphisms are. One can view étale
morphisms for schemes to as the analogue of local homeomorphisms for complex manifolds.
The usual topology for schemes is the Zariski topology, and so one may guess that the obvious
analogue would be:

Non-analogue: Let X, Y be schemes, f : X → Y a morphism of schemes. Then f is a
local isomorphism if any x ∈ X has an open (with respect to the Zariski topology) neighbor-
hood U such that f is an isomorphism of schemes onto its image.

What’s the problem with this? The problem is that the open sets in the Zariski topology
are too big.
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Example 2.2. Let k be an algebraically-closed field, and k× = Spec k[t, t−1]. Then the map
f : k× → k× given by z 7→ z2 is not a local isomorphism in the Zariski sense. Indeed open
subsets of k× are k× \ {finitely many points}, and these do not map isomorphically to their
image. ♢

Étale morphisms are a good analogue because the following holds:

Lemma 2.3 ([Con16, Lemma 1.1.1.6]). A map f : X → S of C-schemes is an étale morphism
if and only if fan is a local isomorphism of analytic spaces.

Now let’s get into the definitions. The following condition keeps things non-pathological:

Definition 2.4 ([Con16, Definition 1.1.1.1]). A morphism f : X → Y of schemes is locally of
finite presentation if there is an affine open covering {SpecBi} of Y and an affine open covering
{Aij} of each f−1(SpecBi) such that each Aij is of the form Aij = Bi[T1, . . . Tn]/I for I a
finitely generated ideal.

Remark 2.5. If f is locally of finite presentation then it is locally of finite type. If Y is a locally
Noetherian schemes then these two notions coincide. ♢

Example 2.6. The morphism f : SpecQ → SpecZ is not locally of finite presentation. ♢

To define an étale morphism one needs to define a flat and unramified morphism. We deal
with flatness first. Recall that if f : X → Y is a map of schemes and x ∈ X, then OX,x has the
structure of a OY,f(x)-module. Indeed, the map f# : OY → f∗OX induces

f#
x : OY,f(x) → OX,x, (U, s) 7→

(
f−1(U), f#

U (s)
)
.

Therefore one can consider OX,x as a OY,f(x)-module with multiplication through f#
x .

Definition 2.7 (Flat morphism). A map f : X → Y of schemes is flat at a point x ∈ X if
OX,x is flat as an OY,f(x)-module (i.e. tensoring by OX,x preserves exact sequences of OY,f(x)-
modules). The map f is flat if it is flat at every x ∈ X.

Remark 2.8. Let A→ B be a homomorphism of commutative rings. Then SpecB → SpecA is
flat if and only if B is flat over A. ♢

Example 2.9. Consider the map k[t]/(t2) → k given by a + bt 7→ t. Then the corresponding
map Spec k → Spec k[t]/(t2) is not flat. Indeed k is not flat as a k[t]/(t2) module, which one can
see by tensoring the exact sequence 0 → (t) → k[t]/(t2) → k → 0 by k = (k[t]/(t2)) /(t). ♢

By taking the fibres of a flat morphism, one gets a flat family of schemes. One can determine
the dimension of the fibres as follows:

Proposition 2.10 ([Har77, Ch. III, Proposition 9.5]). Let f : X → Y be a flat morphism of
schemes of finite type over a field k. For any x ∈ X, let y = f(x). Then

dimx(Xy) = dimxX − dimy Y,

where dimxX is the dimension of the local ring OX,x and Xy is the (scheme-theoretic) fibre
over y.

In nicer situations, this tells us that the dimension of the fibres should remain constant:
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Corollary 2.11 ([Har77, Ch. III, Corollary 9.6]). Let f : X → Y be a flat morphism of schemes
of finite type over a field k, and assume that Y is irreducible. Assume that the dimension of
the irreducible components of X are equal. Then

dimXy = dimX − dimY

for all y ∈ Y with Xy ̸= ∅. In particular dimXy is independent of y.

Example 2.12.

1. Let X = Spec(k[x, y, t]/(xy − t)), Y = Spec(k[t]) and consider the map X → Y induced
by the natural map k[t] → k[x, y, t]/(xy− t). Note that X and Y are regular over k. This
is flat. One can see that the fibres are irreducible hyperbolas when t ̸= 0 and becomes
the reducible scheme consisting of two lines at t = 0.

2. The family of curves y2 = x3+x2+tx is a flat family over Spec k[t]. At t = 0 it degenerates
to the nodal cubic.

♢

Example 2.13. On the other hand, consider X = Spec(k[x, y, t]/(txy− t)) and Y = Spec(k[t])
and the obvious map X → Y . Then for y ̸= 0 one has that Xy is the hyperbola xy = 1. But
at t = 0 we get the affine plane, hence this map is not flat. ♢

Now we turn to unramified morphisms. To define these we first need to define unramified
on the level of rings:

Definition 2.14 ([Poo17, Definition 3.5.28]). A local homomorphism g : A→ B of local rings
(i.e. g−1(mB) = mA) is unramified if

1. g(mA)B = mB,

2. B/mB is finite and separable over A/mA.

Definition 2.15 (Unramified morphism). A morphism f : X → Y of schemes is unramified if
it is locally of finite presentation and if the maps OY,f(x) → OX,x are unramified for all x ∈ X.

Remark 2.16. A morphism of schemes f : X → Y is unramified if and only if it is locally of
finite presentation and ΩX/Y = 0 (cotangent sheaf). ♢

Example 2.17. Let L/K be a finite extension of number fields and consider the map f : SpecOL →
SpecOK . This sends a prime ideal q in OL to the prime ideal p lying below it. Then f is un-
ramified at q if and only if q is unramified in L/K in the usual sense. Indeed pOL,q = (pOL)q =
(qOL,q)

eq/p ♢

Example 2.18. Consider the squaring map A1
k → A1

k. Then this is unramified away from the
origin, assuming 2 is invertible in k. ♢

Example 2.19. Consider the normalization map A1
k → X where X = Spec(k[x, y]/(y2 − x3))

and assume chark ̸= 2. Recall this comes from the ring map (x, y) 7→ (t3, t2). We can determine
when ΩX/Y is non-zero by computing the relative Kähler differential module. One can write
X = SpecA for A = k[t2, t3] and A1

k = SpecB for B = A[x]/(x2 − t2). Then ΩB/A is generated
by dx subject to the relation 0 = d(x2 − t2) = 2xdx. So as a B-module ΩB/A is isomorphic
to Bdx/B(2xdx) = A[x]/(2x, x2 − t2) = k[t]/(t). We are unramfied at x ∈ X if (ΩB/A)x = 0,
hence unramified away from zero ( since (k[t]/(t))p = k[t]p ⊗k[t] k[t]/(t) = k[t]p/(t)k[t]p = 0
unless p = (t)). This is what one would expect. ♢
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Definition 2.20 ([Poo17, Definition 3.5.34]). A morphism f : X → Y is étale at a point x ∈ X
if it is flat at x and unramified at x. The map f is étale if it is étale at every x ∈ X.

Proposition 2.21 ([Mil13, Proposition 2.11]). The following are some properties of étale mor-
phisms:

1. Open immersions are étale morphisms,

2. Compositions of étale morphisms are étale morphisms,

3. Base change of an étale morphism is an étale morphism,

4. If φ ◦ ψ and φ are étale, then so is ψ.

The above properties also hold if one replaces étale morphisms by flat morphisms or unram-
ified morphisms. The following more explicit definition can be helpful for determining when a
morphism is étale.

Proposition 2.22 (Standard étale morphisms, [Mil13, Ch1, P22]). A morphism f : X → Y is
étale if and only if it is locally standard étale.

This means that, for each x ∈ X, y = f(x), there exists affine opens x ∈ U , y ∈ V such
that f(U) ⊆ V and we have

V = SpecR, U = SpecR[x]h/(g)

where h, g ∈ R[x] are polynomials, R[x]h is the localization at h, and g is monic and the
derivative g′ is a unit in R[x]h/(g).

Example 2.23. Gm → Gm induced by t 7→ tn, where Gm = Spec k[t, t−1] is an étale morphism,
if n is prime to the characteristic of k . Indeed, one can view this as induced by the map
k[t, t−1] → k[t, t−1, u]/(un − t) ≃ k[u, u−1] and the derivative of un − t is nun−1 which is a
unit. ♢

Example 2.24 (Separable extensions). Let Y = Spec k where k is a field, and let X be of
finite type over k. Then flatness of the map f : X → Y is automatic. If X = SpecL where L/k
is a finite separable extension of k, then f is unramified. Indeed, write L = k[x]/(f). Then
ΩL/k ≃ k[t]/(f, f ′)dt = 0 since f and f ′ are coprime.

More generally, X → Y is étale, if and only if X is a finite product of SpecLi where Li/k
are finite separable extensions. ♢

3 Appetite whetting: étale cohomology and Galois coho-
mology

Now let X = Spec k, where k is a field. Then if U → X is an étale morphism, one has that U
is a disjoint union of k-affine schemes SpecL where L/k is a finite separable extension.

Consider a functor F : Ét(X)op → Set (i.e. a presheaf). For the value of F on the morphism
U → X we write F(U). It is a sheaf (as will be properly defined in the next talk) if and only
if the following properties are satisfied:

1. For any disjoint union
∏
Ui we have

F(
∏

Ui) =
∏

F(Ui).
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2. For all finite separate extensions k′′/k′/k such that k′′/k′ is Galois we have that F(Spec k′) →
F(Spec k′′) is injective and F(Spec k′) = F(Spec k′′)Gal(k′′/k′).

Write F(L) for F(SpecL). Fix a separable closure ks and define F(ks) := lim−→F(L) ranging
over all finite separable Galois extensions L/k contained in ks. Then Gk acts on F(ks) (this
follows from functoriality of F and Spec, so that the action of Gk on the F(L) is compatible).

Theorem 3.1 ([Poo17, Theorem 6.4.6]). Let k be a field and choose a separable closure ks of
k.

1. The functor

{sheaves of sets on (Spec k)ét} → {Gk-sets}
F 7→ F(ks)

is an equivalence of categories. The global section functor corresponds to the functor that
takes a Gk-set M to MGk .

2. This restricts to an equivalence

{abelian sheaves on (Spec k)et} → {Gk-modules}.

3. There are natural isomorphisms

Hq
ét(Spec k,F) ≃ Hq(Gk,F(ks))

for all q ∈ N.

Proof sketch.

1. The sheaf axioms show that there is a well-defined action of Gk on F(ks). We show that
Gk acts continuously on F(ks). Consider the stabilizer of any element. Consider [a] for
a ∈ F(L), L/k finite separable. Then StabGk

(a) = ker(G → Gal(L/k)) which is open.
Therefore the action of Gk is continuous with respect to the discrete topology on F(L).

Now we define an inverse map. Let S be a Gk-set. For each finite separable extension L/k
contained in ks, define F(L) = SGal(ks/L). Since every étale k-scheme U is a disjoint union
of k-schemes of the form SpecL, we define F(U) to be the product of the corresponding
F(L). The restriction maps for L′/L a finite separable extension, where L′/k, L/k are
separable finite extensions is given by SGal(ks/L′) ↪→ SGal(ks/L). The fact that this defines
a sheaf follows by using the axioms from from above. Then F(k) = SGal(ks/k) = SGk .

2. Clear.

3. The global sections functor corresponds to the Gk-invariants functor. The result follows
by taking derived functors.
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