Ray class fields

Edwina Aylward

May 23, 2024

Recap of last week

Let L/K be a Galois extension. Let \mathfrak{P} be an unramified prime of L lying over a prime \mathfrak{p} of K. Last week Albert defined the **Artin symbol**

$$\left(rac{L/K}{\mathfrak{P}}
ight)\in \mathrm{Gal}(L/K)$$

which is the unique element that maps mod \mathfrak{P} to the Frobenius element of $\operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_{\mathfrak{p}}).$

When L/K is abelian, $\left(\frac{L/K}{\mathfrak{P}}\right)$ depends only on $\mathfrak{p} \rightsquigarrow$ write $\left(\frac{L/K}{\mathfrak{p}}\right)$. For L/K abelian and unramified, one defines the **Artin map**

$$\left(\frac{L/K}{\cdot}\right): I_K \to \operatorname{Gal}(L/K), \quad \mathfrak{a} = \prod_i \mathfrak{p}^{r_i} \mapsto \prod_i \left(\frac{L/K}{\mathfrak{p}}\right)^{r_i}.$$

Artin reciprocity: If L is the Hilbert class field of K, then the Artin map induces an isomorphism

$$\operatorname{Cl}(K) = I_K / P_K \simeq \operatorname{Gal}(L/K).$$

From now on assume L/K is abelian. The Artin symbol is still well-defined away from the ramified primes of L/K, so one can define an Artin map for L/K on a subgroup of I_K .

Definition

Let K be a number field.

- A modulus m for K is a pair (m₀, m_∞) where m₀ is an integral ideal of K and m_∞ is a subset of the real embeddings of K. Formally, one writes m = m₀m_∞.
- Let I_K(m) denote the group of all fractional O_K-ideals relatively prime to m₀.

Elements of $I_{\mathcal{K}}(\mathfrak{m})$ are of the form $\mathfrak{a}/\mathfrak{b}$ where \mathfrak{a} , \mathfrak{b} are coprime integral ideals in \mathcal{K} that are coprime to \mathfrak{m}_0 .

Definition

If L/K is an abelian extension, \mathfrak{m} a modulus for K divisible by all primes that ramify in L, then one has a well-defined Artin map

$$\Phi_{\mathfrak{m}} \colon \left(\frac{L/K}{\cdot}\right) \colon I_{K}(\mathfrak{m}) \to \operatorname{Gal}(L/K)$$

defined as before by extending the Artin symbol multiplicatively.

Example

Let $L = \mathbb{Q}(\zeta_m)$, $K = \mathbb{Q}$. Then $\mathfrak{m} = (m)\infty$ is divisible by all ramified primes of L/K. Thus we have $\Phi_{\mathfrak{m}} \colon I_{\mathbb{Q}}(\mathfrak{m}) \to \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \simeq (\mathbb{Z}/m\mathbb{Z})^{\times}$ where for $\frac{a}{b}\mathbb{Z} \in I_{\mathbb{Q}}(m)$ with $\frac{a}{b} > 0$ one has

$$\Phi_{\mathfrak{m}}(\frac{a}{b}\mathbb{Z}) = [a][b]^{-1} \in (\mathbb{Z}/m\mathbb{Z})^{\times}.$$

This is surjective.

- We saw that unramified extensions of K gave Galois groups isomorphic to subgroups of Cl(K).
- Next, we define generalized ideal class groups, which we will see to be the Galois groups of all abelian extensions of K.

Ray class groups

Definition (Ray group)

Given a modulus \mathfrak{m} of K, let $P_{K}(\mathfrak{m})$ be the subgroup of $I_{K}(\mathfrak{m})$ consisting of all principal fractional ideals (α) where $\alpha \in K^{\times}$ satisfies

- $v_{\mathfrak{p}}(\alpha 1) \ge v_{\mathfrak{p}}(\mathfrak{m}_0)$ for each finite prime \mathfrak{p} ,
- 2 $\sigma(\alpha) > 0$ for every real infinite prime $\sigma \mid \mathfrak{m}$.

Example

Let
$$K = \mathbb{Q}$$
 and $\mathfrak{m} = (m), \ m \in \mathbb{N}$. Consider $\frac{a}{b}\mathbb{Z} \in I_{\mathbb{Q}}(\mathfrak{m})$. For $p^k \mid m$,

$$v_p(rac{a}{b}-1)=v_p(a-b)+v_p(b)\geq k\implies a\equiv b\mod p^k.$$

Thus

$$P_{\mathbb{Q}}(\mathfrak{m}) = \{ \frac{a}{b} \mathbb{Z} \in I_{\mathbb{Q}}(\mathfrak{m}) \mid a \equiv b \mod m \}.$$

If $\mathfrak{m}' = (m)\infty$, then $P_{\mathbb{Q}}(\mathfrak{m}') = \{ \frac{a}{b}\mathbb{Z} \in I_{\mathbb{Q}}(\mathfrak{m}') \mid a \equiv b \mod m, a/b > 0 \}.$

Definition (Congruence subgroup)

A subgroup $H \subset I_{\mathcal{K}}(\mathfrak{m})$ is a congruence subgroup for \mathfrak{m} if it satisfies

 $P_{\mathcal{K}}(\mathfrak{m}) \subset H \subset I_{\mathcal{K}}(\mathfrak{m}).$

Definition (Generalised ideal class group)

Let H be a congruence subgroup, then the quotient

 $I_K(\mathfrak{m})/H$

is a generalised ideal class group for \mathfrak{m} .

Definition (Ray class group)

If $H = P_{\mathcal{K}}(\mathfrak{m})$, then $I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m})$ is known as the ray class group.

Theorem (Existence theorem)

Let \mathfrak{m} be a modulus of K and let H be a congruence subgroup for \mathfrak{m} , i.e.

 $P_{\mathcal{K}}(\mathfrak{m}) \subset H \subset I_{\mathcal{K}}(\mathfrak{m}).$

Then there is a **unique** abelian extension L/K such that all its ramified primes divide \mathfrak{m} , and

 $I_{\mathcal{K}}(\mathfrak{m})/H \simeq \operatorname{Gal}(L/K)$

under the Artin map $\Phi_{\mathfrak{m}}$.

Definition (Ray class field)

Let \mathfrak{m} be any modulus for K. The ray class field is the **unique** abelian extension $K_{\mathfrak{m}}$ of K such that

$$\operatorname{Gal}(K_{\mathfrak{m}}/K) \simeq I_K(\mathfrak{m})/P_K(\mathfrak{m}).$$

Example (Cyclotomic extensions)

Let $K = \mathbb{Q}$, $m \in \mathbb{Z}_{>0}$, $m \not\equiv 2 \mod 4$. For $\mathfrak{m} = (m)\infty$,

$$P_{\mathbb{Q}}(\mathfrak{m}) = \{ \frac{a}{b} \mathbb{Z} \in I_{\mathbb{Q}}(\mathfrak{m}) \colon a \equiv b \mod m, \frac{a}{b} > 0 \}.$$

When $L = \mathbb{Q}(\zeta_m)$, we saw that $\Phi_{L/K,\mathfrak{m}}((a/b)\mathbb{Z}) = [a][b]^{-1}$ for a/b > 0. Thus ker $(\Phi_{L/K,\mathfrak{m}}) = P_{\mathbb{Q}}(\mathfrak{m}) \implies K_{\mathfrak{m}} = \mathbb{Q}(\zeta_m)$. If we take the modulus $\mathfrak{m} = (m)$, then the ray class field is $\mathbb{Q}(\zeta_m + \zeta_m^{-1})$. Consider $K = \mathbb{Q}(i)$ and modulus \mathfrak{m} . Recall $\operatorname{Cl}(K) = 1$. One has

$$P_{\mathcal{K}}(\mathfrak{m}) = \{ \frac{\alpha}{\beta} \mathbb{Z}[i] \mid \alpha \equiv \beta \mod \mathfrak{m} \}.$$

If $\beta \in \mathbb{Z}[i]$ is coprime to \mathfrak{m} , then there exists $\gamma \in \mathbb{Z}[i]$ such that $1/\beta \equiv \gamma \mod \mathfrak{m}$. Thus $\alpha/\beta\mathbb{Z}[i] \equiv \alpha\gamma\mathbb{Z}[i] \mod P_{\mathcal{K}}(\mathfrak{m})$.

Therefore $I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m})$ consists of integral ideal representatives mod \mathfrak{m} that are coprime to \mathfrak{m} , i.e.

$$I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m}) = (\mathbb{Z}[i]/\mathfrak{m})^{\times}/U(\mathcal{K})$$

where $U(K) = \{\pm 1, \pm i\}$ is the unit group of K.

Ray class groups over $\mathbb{Q}(i)$, $\mathfrak{m} = (3)$, (5), (13)

• Consider $\mathfrak{m} = (3)$. Then

$$(\mathbb{Z}[i]/\mathfrak{m})^{\times}/U(K) = \mathbb{F}_9^{\times}/U(K) = \mathbb{Z}/2\mathbb{Z}.$$

generated by (1+i).

• Consider
$$\mathfrak{m} = (5)$$
. Then

$$(\mathbb{Z}[i]/\mathfrak{m})^{\times}/U(K) = (\mathbb{F}_5^{\times} \times \mathbb{F}_5^{\times})/U(K) = \mathbb{Z}/4\mathbb{Z},$$

generated by (1 + i).

• Consider $\mathfrak{m} = (13)$. Then

 $(\mathbb{Z}[i]/\mathfrak{m})^{\times}/U(K) = (\mathbb{F}_{13}^{\times} \times \mathbb{F}_{13}^{\times})/U(K) \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}.$

Artin reciprocity

Conversely, given an abelian extension L/K, we want to describe $\operatorname{Gal}(L/K)$ as a generalised ideal class group for some modulus, induced by the Artin map.

Theorem (Artin reciprocity)

Let L/K be abelian. There exists a modulus \mathfrak{m} , divisible by all the primes that ramify in L/K, such that

- $\Phi_{\mathfrak{m}} \colon I_{\mathcal{K}}(\mathfrak{m}) \to \operatorname{Gal}(L/\mathcal{K})$ is surjective,
- $ker(\Phi_m)$ is a congruence subgroup,
- we have an isomorphism

$$I_{\mathcal{K}}(\mathfrak{m})/\ker(\Phi_{\mathfrak{m}})\simeq \operatorname{Gal}(L/\mathcal{K}).$$

This means the Artin map factors through the ray class group for \mathfrak{m} . Such a modulus satisfying this theorem is not unique, but there is a unique 'minimal' modulus.

Theorem (Conductor theorem)

Let L/K be an abelian extension. Then there exists a **unique** modulus f = f(L/K) such that

- a prime of K ramifies in L if and only if it divides f,
- let m be a modulus divisible by all primes of K that ramify in L. Then ker(Φ_m) is a congruence subgroup for m if and only if f | m.

Remark

The conductor is the greatest common divisor of all moduli \mathfrak{m} of K for which the Artin reciprocity theorem holds for L/K and \mathfrak{m} . In particular the Artin reciprocity theorem holds for $\mathfrak{f}(L/K)$ and it is the minimal such modulus.

Example (Quadratic fields)

Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt{d})$ for d a square-free integer. Let Δ be the discriminant. Then

$$\mathfrak{f}(L/\mathcal{K}) = egin{cases} |\Delta| & d>0, \ |\Delta|\infty & d<0. \end{cases}$$

Example (Cyclotomic fields)

$$\mathfrak{f}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) = egin{cases} 1 & m \leq 2, \ (m/2)\infty & m = 2n, n > 1 ext{ odd}, \ m\infty & ext{ otherwise}. \end{cases}$$

Example (Warning)

The conductor isn't just the product of ramified primes. For example, let $K = \mathbb{Q}$, $L = \mathbb{Q}(\alpha)$ with $\alpha^3 - 3\alpha - 1 = 0$. This is only ramified at 3. However

- ker($\Phi_{\mathfrak{m}}$) isn't a congruence subgroup for $\mathfrak{m} = (3), (3)\infty$,
- ker($\Phi_{\mathfrak{m}}$) is a congruence subgroup for $\mathfrak{m} = (9)$.

Remark

The conductor can be computed as the product of local conductors.

Every abelian extension in a ray class field

Corollary (of Takagi existence + Artin reciprocity)

Let L/K and M/K be abelian extensions. Then $L \subset M$ if and only if there is a modulus \mathfrak{m} , divisible by all primes of K ramified in either L or M, such that

$$\mathcal{P}_{\mathcal{K}}(\mathfrak{m}) \subset \ker(\Phi_{M/\mathcal{K},\mathfrak{m}}) \subset \ker(\Phi_{L/\mathcal{K},\mathfrak{m}}).$$

Corollary

Every abelian extension is contained in a ray class field.

Proof.

If L/K is abelian, and $\mathfrak{f}(L/K) \mid \mathfrak{m}$, then $H := \ker(\Phi_{L/K,\mathfrak{m}})$ is a congruence subgroup by Artin reciprocity, so $P_K(\mathfrak{m}) \subset H$. Then by the above $K_\mathfrak{m} \supset L$.

Theorem (Kronecker-Weber)

Let L/\mathbb{Q} be an abelian extension. Then there is a positive integer m such that $L \subset \mathbb{Q}(\zeta_m)$.

Proof.

There is an integer *m* such that $\mathfrak{f}(L/K) \mid (m)\infty := \mathfrak{m}$. Then $L \subset \mathbb{Q}_{\mathfrak{m}} = \mathbb{Q}(\zeta_m)$.

Example

Consider $L = \mathbb{Q}(\sqrt{d})$ with discriminant Δ . Then $L \subset \mathbb{Q}(\zeta_{|\Delta|})$.

Theorem

Let L/K be an abelian extension of degree n. Let \mathfrak{p} be an unramified prime in K. Let \mathfrak{m} be a modulus divisible by $\mathfrak{f}(L/K)$, but not by \mathfrak{p} . Suppose f is the the smallest positive integer such that

 $p^f \in \ker(\Phi_{\mathfrak{m}}).$

Then p decomposes in L into a product

$$\mathfrak{p}=\mathfrak{P}_1\cdots\mathfrak{P}_r$$

of r = n/f distinct prime ideals of degree f over p.

Example

Consider $\mathbb{Q}(\zeta_q)/\mathbb{Q}$, q prime. For $p \neq q$, p factors into (q-1)/f primes, where f is the least positive integer such that $q \mid p^f - 1$, i.e. $p^f \mathbb{Z} \in P_{\mathbb{Q}}(q\infty)$.

Edwina Aylward

Quadratic reciprocity

Edwina Aylward

Ray class fields over $\mathbb{Q}(i)$

Let $K = \mathbb{Q}(i)$. Recall that we computed

$$\begin{split} &I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m}) = \mathbb{Z}/2\mathbb{Z}, & \mathfrak{m} = (3), \\ &I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m}) = \mathbb{Z}/4\mathbb{Z}, & \mathfrak{m} = (5), \\ &I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m}) = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}, & \mathfrak{m} = (13). \end{split}$$

Claim: for $\mathfrak{m} = (3)$, $K_{\mathfrak{m}} = \mathbb{Q}(i, \zeta_3) = K(\zeta_3)$. Note $\operatorname{Gal}(K(\zeta_3)/K) \simeq (\mathbb{Z}/3\mathbb{Z})^{\times}$. If $(a + ib)\mathbb{Z}[i] \in I_K(\mathfrak{m})$ is a prime ideal, then the Artin symbol is defined by

$$\left(\frac{\mathcal{K}(\zeta_3)/\mathcal{K}}{a+ib}\right)(\zeta_3) = \zeta_3^{N_{\mathcal{K}/\mathbb{Q}}(a+ib)}$$

 $\Phi_{\mathfrak{m}}$ is surjective (image of 1 + i non-trivial), so $[I_{\mathcal{K}}(\mathfrak{m}) : \ker(\Phi_{\mathfrak{m}})] = 2$. If $a + ib \equiv 1 \pmod{3}$ for $a + ib \in \mathbb{Z}[i]$ then $N_{\mathcal{K}/\mathbb{Q}}(a + ib) \equiv 1 \pmod{3}$ so that $\zeta_3^{N_{\mathcal{K}/\mathbb{Q}}(a+ib)} = \zeta_3$ and $(a + ib)\mathbb{Z}[i] \in \ker \Phi_{\mathfrak{m}}$. Thus $P_{\mathcal{K}}(\mathfrak{m}) \in \ker(\Phi_{\mathfrak{m}}) \implies P_{\mathcal{K}}(\mathfrak{m}) = \ker(\Phi_{\mathfrak{m}})$ since they have equal index in $I_{\mathcal{K}}(\mathfrak{m})$.

Let $K = \mathbb{Q}(i)$. Recall that we computed

$$\begin{split} &I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m})=\mathbb{Z}/2\mathbb{Z}, & \mathfrak{m}=(3), \\ &I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m})=\mathbb{Z}/4\mathbb{Z}, & \mathfrak{m}=(5), \\ &I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m})=\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/12\mathbb{Z}, & \mathfrak{m}=(13). \end{split}$$

For $\mathfrak{m} = (5)$, $K_{\mathfrak{m}} = \mathbb{Q}(i, \zeta_5)$.

For $\mathfrak{m} = (13)$, $\mathbb{Q}(i, \zeta_{13}) \subsetneq K_{\mathfrak{m}}$. The Artin map $\phi_{\mathfrak{m}}$ for $\mathbb{Q}(i, \zeta_{13})/K$ contains $P_{K}(\mathfrak{m})$ in its kernel.

Again let $K = \mathbb{Q}(i)$. Let L/K be an abelian extension, ramified only at 11. Then $\mathfrak{f} = \mathfrak{f}(L/K) = (11^n)\mathbb{Z}_K$ and $L \subset K_{\mathfrak{f}}$. One has

$$\operatorname{Gal}(K_{\mathfrak{f}}/K) \simeq I_{K}(\mathfrak{f})/P_{K}(\mathfrak{f}) = (\mathbb{Z}_{K}/(11^{k}))^{\times}/U(K)$$

$$= (11\operatorname{-group}) \times \mathbb{F}_{121}^{\times} / U(\mathcal{K}) = (11\operatorname{-group}) \times (\mathbb{Z}/30\mathbb{Z}).$$

Then $\operatorname{Gal}(L/K)$ is a quotient of $\operatorname{Gal}(K_{\mathfrak{f}}/K)$. For example, this has no C_4 quotient, so there does not exist a C_4 extension of $\mathbb{Q}(i)$ ramified only at 11.

Let $K = \mathbb{Q}(\zeta_3)$. Then $\operatorname{Cl}(K) = 1$. Consider the modulus $\mathfrak{m} = 6\mathbb{Z}[\zeta_3]$. Now $6\mathbb{Z}[\zeta_3] = 2\mathbb{Z}[\zeta_3] \cdot (2 + \zeta_3)^2 \mathbb{Z}[\zeta_3]$. Thus

$$I_{\mathcal{K}}(\mathfrak{m})/P_{\mathcal{K}}(\mathfrak{m}) = (\mathbb{Z}[\zeta_3]/\mathfrak{m})^{\times}/U(\mathcal{K})$$

$$\simeq \left((\mathbb{Z}[\zeta_3]/(2))^{\times} \times (\mathbb{Z}[\zeta_3]/(2+\zeta_3)^2)^{\times} \right) / U(\mathcal{K}) = C_3,$$

recalling |U(K)| = 6.

Claim: $\mathcal{K}_{\mathfrak{m}} = \mathbb{Q}(\zeta_3, \sqrt[3]{2}) = \mathcal{K}(\sqrt[3]{2}).$

By the decomposition law, a prime \mathfrak{p} in K splits completely in $K_{\mathfrak{m}}$ if and only if it has a generator which is 1 (mod \mathfrak{m}). For example $5\mathbb{Z}_{K}$,

 $(1+6\zeta_3)\mathbb{Z}_K$ are prime and split in $K_{\mathfrak{m}}$. If $p \equiv 2 \pmod{3}$ then it is inert in K and splits completely in $K_{\mathfrak{m}}/K$.