Reduction types of genus 2 curves

LuCaNT 2025

Edwina Aylward (UCL)

July 10th, 2025

Joint work with Vladimir Dokchitser and Elvira Lupoian.

Art in mathematics

Kodaira symbol	I ₀	I_n $(n \ge 1)$	II	III	IV	I_0^{\star}	$I_n^* \\ (n \ge 1)$	IV*	III*	II*			
Special fiber Č (The numbers indicate multi- plicities)	0		\	1 1	i l		1 2 2	1 2 3	1 2 3 4	5 6 3 4			
m = number of irred. components	1	n	1	2	3	5	5+n	7	8	9			
$E(K)/E_0(K)$ $\cong \tilde{\mathcal{E}}(k)/\tilde{\mathcal{E}}^0(k)$	(0)	$rac{\mathbb{Z}}{n\mathbb{Z}}$	(0)	$rac{\mathbb{Z}}{2\mathbb{Z}}$	$\frac{\mathbb{Z}}{3\mathbb{Z}}$	$\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$	$\frac{\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}}{n \text{ even}}$ $\frac{\mathbb{Z}}{4\mathbb{Z}}$ $n \text{ odd}$	$\frac{\mathbb{Z}}{3\mathbb{Z}}$	$\frac{\mathbb{Z}}{2\mathbb{Z}}$	(0)			
$\tilde{\mathcal{E}}^0(k)$	$\tilde{E}(k)$	k*	k ⁺	k ⁺	k ⁺	k^+	k ⁺	k^+	k ⁺	k ⁺			
Entries below this line only valid for $char(k) = p$ as indicated													
char(k) = p			$p \neq 2, 3$	$p \neq 2$	$p \neq 3$	$p \neq 2$	$p \neq 2$	$p \neq 3$	$p \neq 2$	$p \neq 2, 3$			
$v(D_{E/K})$ (discriminant)	0	n	2	3	4	6	6+n	8	9	10			
f(E/K) (conductor)	0	1	2	2	2	2	2	2	2	2			
behavior of j	$v(j) \ge 0$	v(j) = -n	$\tilde{j} = 0$	$\tilde{j} = 1728$	$\tilde{j}=0$	$v(j) \ge 0$	v(j) = -n	$\tilde{j} = 0$	$\tilde{j} = 1728$	$\tilde{j} = 0$			

Table 4.1: A Table of Reduction Types

Genus 2

Hyperelliptic: $y^2 = f(x)$, deg f = 6.

100+ families of reduction types (Namikawa-Ueno labels). Split into 7 semistable types:

Good (18)

One node (12)

Two nodes (5)

92

_Q____91

Good EC×Good EC (42)

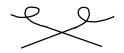
00

Two \mathbb{P}^1 s \cap at 3 pts (6)

91

Mult EC×Good EC (16)

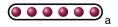
Mult EC×Mult EC (5)



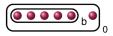
Potentially good reduction

Consider
$$C: y^2 = c \cdot \prod_{i=1}^6 (x - r_i), \quad r_i \in \overline{\mathcal{K}}, \ c \in \mathcal{K}^{\times}$$
 (res. char $\mathcal{K} > 5$).

If C/\mathcal{K} has potentially good reduction, one can obtain an equation for C with one of the following associated cluster pictures:



$$a \in \{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\}$$



$$b \in \{0, \tfrac{1}{4}, \tfrac{1}{2}, \tfrac{3}{4}, \tfrac{1}{5}, \tfrac{2}{5}, \tfrac{3}{5}, \tfrac{4}{5}\}$$

(Faraggi-Nowell)

The reduction type is determined by the pair:

$$(a, v(c) \mod 2)$$
 or $(b, v(c) \mod 2)$

For your consideration

Namikawa-Ueno label	I_0	I ₀ *	II	III	IV	V	V*	VI	VII	VII*	VIII-1	VIII-2	VIII-3	VIII-4	IX-1	IX-2	IX-3	IX-4
Special fibre	92	<u></u>	2 91	3	3 6	2 4 6 ===================================	2 4 6	2 3 4 2	4 8	2 5 4 7 8 4 3 2	10	5 8 10	1 10	2 6 0 7 8 6 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 5	5	2 3 5	3 3 4 5 3 2
Number of components	1	7	3	7	6	5	12	7	5	12	5	9	6	13	6	5	11	9
$\Phi(\overline{k})$	(0)	$\left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^4$	(0)	$\left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^2$	(0)	$\frac{\mathbb{Z}}{3\mathbb{Z}}$	$\frac{\mathbb{Z}}{3\mathbb{Z}}$	$\left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^2$	$\frac{\mathbb{Z}}{2\mathbb{Z}}$	$\frac{\mathbb{Z}}{2\mathbb{Z}}$	(0)	(0)	(0)	(0)	$\frac{\mathbb{Z}}{5\mathbb{Z}}$	$\frac{\mathbb{Z}}{5\mathbb{Z}}$	$\frac{\mathbb{Z}}{5\mathbb{Z}}$	$\frac{\mathbb{Z}}{5\mathbb{Z}}$
							($char(\overline{k})$	$\neq 2, 3, 5$,								
a	0	0	1/2, 1/2	1/3, 2/3	1/3, 2/3	1/6, 5/6	1/6, 5/6				4/5	2/5	3/5	1/5	3/5	1/5	4/5	2/5
b	0	0	1/2	2/0	2/3	0/5	0/0	1/2, 1/2	1/4, 3/4	1/4, 3/4	1/5	3/5	2/5	4/5	2/5	4/5	1/5	3/5
f (conductor)	0	4	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
$v(\Delta_{\min})$	0	10	15	10	20	5	15	10	5	15	4	12	18	16	8	6	14	12

A Table of Potentially Good Reduction Types

 $[\]blacksquare$: $v(c) \equiv 0 \mod 2$,

 $[\]mathbf{v}(c) \equiv 1 \mod 2$.