ℓ-parity results over global function fields

Edwina Aylward

JNT Seminar

November 4th, 2025

Global Function Fields

- $K = \mathbb{F}_q(C)$ is the function field of a smooth, projective, geometrically irreducible curve C/\mathbb{F}_q , q a p-power.
- A closed point of C is a $\mathrm{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ -orbit of a point $P\in C(\overline{\mathbb{F}}_q)$, and

Places of $K \leftrightarrow$ closed points of C.

- $\mathcal{O}_x =$ local ring of functions that are regular at a closed point x, with maximal ideal $\mathfrak{m}_x =$ functions vanishing at x.
- Residue field: $\kappa_x = \mathcal{O}_x/\mathfrak{m}_x$, with $\deg(x) := [\kappa_x : \mathbb{F}_q], \quad |\kappa_x| = q^{\deg(x)}$.
- Completion: K_x .

Example

Consider $C = \mathbb{P}^1_{\mathbb{F}_q}$ with function field $K = \mathbb{F}_q(t)$.

- The closed points of C correspond to monic irreducible polynomials in $\mathbb{F}_q[t]$, together with the point at infinity.
- For a closed point x corresponding to an irreducible polynomial f(t):

$$\mathcal{O}_{\scriptscriptstyle X} = \left\{ rac{g}{h} \in \mathbb{F}_q(t) : f
mid h
ight\}, \quad \mathfrak{m}_{\scriptscriptstyle X} = (f), \quad \kappa_{\scriptscriptstyle X} = \mathbb{F}_q[t]/(f) \simeq \mathbb{F}_{q^{\deg(f)}}, \quad \mathsf{K}_{\scriptscriptstyle X} = \kappa_{\scriptscriptstyle X}((f))$$

• The point at infinity corresponds to the valuation $v_{\infty}(f/g) = \deg(g) - \deg(f)$.

Abelian Varieties

- An abelian variety A/K is a complete connected algebraic group.
- In other words, it's an elliptic curve, the Jacobian of a smooth projective curve, or something else.
- Mordell-Weil theorem: its group of K-rational points A(K) is a finitely generated abelian group:

$$A(K) \simeq A(K)_{\mathrm{tors}} \oplus \mathbb{Z}^r, \quad r = \mathrm{rk}(A/K).$$

• For $\ell \neq p$, the ℓ -adic Tate module:

$$T_{\ell}(A) = \varprojlim_{n} A[\ell^{n}](K^{\text{sep}}), \quad V_{\ell}(A) = T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell},$$

carries a continuous $G_K = \operatorname{Gal}(K^{\text{sep}}/K)$ -action.

L-functions and BSD

Given an abelian variety A/K, its Hasse–Weil L-function is given by an Euler product $(\ell \neq p)$:

$$L(A/K,s) = \prod_{x} P_{x} \left(q^{(1-s)\cdot \deg(x)}\right)^{-1}, \qquad P_{x}(T) = \det(1-\varphi_{x}T \mid V_{\ell}(A)^{l_{x}}).$$

where

- x ranges over all closed points of C,
- $I_x \leq G_K$ is the inertia subgroup at x,
- φ_x is the geometric Frobenius at x, acting on $\overline{\kappa}_x$ by $y \mapsto y^{1/\#\kappa_x}$.

Converges absolutely for $Re(s) > \frac{3}{2}$ (Weil bounds).

Birch-Swinnerton-Dyer Conjecture

$$\operatorname{rk} A/K = \operatorname{ord}_{s=1} L(A/K, s).$$

BSD over function fields fact file

- Unbounded rank: There exist explicit families of elliptic curves over function fields with arbitrarily large rank.
- Tate: $\operatorname{rk} A/K \leq \operatorname{ord}_{s=1} L(A/K, s)$.
- BSD for Jacobians ⇒ BSD for all abelian varieties.
- Kato–Trihan (2003): BSD is equivalent to showing the finiteness of any ℓ -primary part of the Tate-Shafarevich group $\mathrm{III}(A/K)$.
- Kato-Trihan (2003): Weak BSD implies refined BSD.
- BSD for Jacobians: look at surface over \mathbb{F}_q corresponding to curve. Néron-Severi groups, \coprod is a Brauer group, Artin–Tate conjecture for surfaces . . .

Example

Example

Consider $E: y^2 = x^3 + t^2x + t^2$ over $K = \mathbb{F}_3(t) = \mathbb{F}_3(\mathbb{P}^1)$. Then E has bad reduction at t and at ∞ , and good reduction elsewhere. The L-funtion of E can be computed using the formula^a

$$L(E/K,T) = \frac{Z(C,T)Z(C,qT)}{Z(\mathcal{E},T)} \prod_{\text{bad } v} \frac{(1-T)^{a_v+1}(1+T)^{b_v}}{(1-q_v T^{\deg(v)})^{f_v-1}(1+q_v T^{\deg(v)})^{g_v}},$$

where \mathcal{E}/\mathbb{F}_3 is the elliptic surface associated to E. One computes

$$L(E/K, T) = 1 - 9T^2$$
, $L(E/K, 3^{-s}) = 2 \log 3 \cdot (s - 1) - 2(\log 3)^2 \cdot (s - 1)^2 + \cdots$

Thus $\operatorname{ord}_{s=1} L(E/K, s) = 1$. The point (0, t) has infinite order, and computing the 2-Selmer groups shows that $\operatorname{rk} E/K = 1$.

^aProposition 6.1, Elliptic curves over function fields, Douglas Ulmer.

L-functions are rational functions

Theorem (Grothendieck)

$$L(A/K,s) = rac{L_1(s)}{L_0(s) \cdot L_2(s)}, \quad L_i(s) = \det(1-q^{1-s}\varphi_\ell, \mathcal{H}_{\mathbb{Q}_\ell}^i) \in \mathbb{Q}[q^{-s}],$$

where $\mathcal{H}_{\mathbb{Q}_{\ell}}^{i}$ are étale cohomology groups with an action of φ_{ℓ} induced by geometric Frobenius.

Idea: Representations \leftrightarrow sheaves correspondence and Grothendieck-Lefschetz trace formula.

- It follows that L(A/K, s) is a rational function in q^{-s} and admits a meromorphic continuation to \mathbb{C} .
- Duality results $\leadsto L(A/K, s)$ satisfies a functional equation centered at s=1.
- Deligne: Eigenvalues of φ_ℓ acting on $\mathcal{H}^i_{\mathbb{Q}_\ell}$ have absolute value $q^{(i-1)/2}$.
- Thus

 $\operatorname{ord}_{s=1} L(A/K, s) = \operatorname{multiplicity} \text{ of } 1 \text{ as a root of characteristic polynomial of } \varphi_\ell$ = dimension of part of $\mathcal{H}^1_{\mathbb{Q}_\ell}$ on which φ_ℓ acts unipotently.

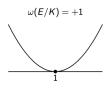
The Parity Conjecture

BSD

$$\operatorname{rk} A/K = \operatorname{ord}_{s=1} L(A/K,s).$$

Functional equation

$$L(A/K, 2-s) = w(A/K) \cdot q^{\alpha(s)} \cdot L(A/K, s).$$



Parity conjecture

$$(-1)^{\operatorname{rk} A/K} = w(A/K), \quad w(A/K) = \pm 1.$$

The global root number w(A/K) is the product of local root numbers. Because the functional equation holds in the global function field setting,

$$w(A/K) = (-1)^{\operatorname{ord}_{s=1} L(A/K,s)}.$$

Thus the parity conjecture can be restated as

$$\operatorname{ord}_{s=1} L(A/K, s) \equiv \operatorname{rk} A/K \mod 2.$$

ℓ-parity conjecture

Define the ℓ^{∞} -Selmer group $\mathrm{Sel}_{\ell^{\infty}}(A/K) = \varinjlim_{n} \mathrm{Sel}_{\ell^{n}}(A/K)$ where

$$\mathrm{Sel}_{\ell^n}(A/K) = \ker(H^1(G_K,A[\ell^n]) \to \prod_v H^1(G_{K_v},A(K_v^{\mathrm{sep}})).$$

This fits into the following exact sequence of cofinitely generated \mathbb{Z}_{ℓ} -modules.

$$0 \to A(K) \otimes \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell} \to \mathrm{Sel}_{\ell^{\infty}}(A/K) \to \mathrm{III}(A/K)[\ell^{\infty}] \to 0.$$

Set $\mathcal{X}_{\ell}(A/K) = \operatorname{Hom}(\operatorname{Sel}_{\ell^{\infty}}(A/K), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}) \otimes \mathbb{Q}_{\ell}$. The dimension of $\mathcal{X}_{\ell}(A/K)$ is the Mordell–Weil rank of A/K plus the number of copies of $\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}$ in $\coprod (A/K)$.

ℓ -parity conjecture

$$(-1)^{\dim_{\mathbb{Q}_{\ell}} \mathcal{X}_{\ell}(A/K)} = w(A/K).$$

If $|\coprod (A/K)[\ell^{\infty}]| < \infty$ then ℓ -parity conjecture \implies parity conjecture.

Semi-simplicity. What, like it's hard?

Let $r_{\ell} = \dim_{\mathbb{Q}_{\ell}} \mathcal{X}_{\ell}(A/K)$. By work of Kato and Trihan, it turns out that

$$r_{\ell} = \dim_{\mathbb{Q}_{\ell}} \ker(1 - \varphi_{\ell} \mid \mathcal{H}^{1}_{\mathbb{Q}_{\ell}}).$$

Set

$$\mathcal{I}_{2,\ell} = \ker(1 - \varphi_\ell \mid \mathcal{H}^1_{\mathbb{Q}_\ell}), \qquad \mathcal{I}_{3,\ell} = \mathsf{part} \ \mathsf{of} \ \mathcal{H}^1_{\mathbb{Q}_\ell} \ \mathsf{where} \ \varphi_\ell \ \mathsf{acts} \ \mathsf{unipotently}.$$

Recall that $\operatorname{ord}_{s=1} L(A/K,s) = \dim_{\mathbb{Q}_{\ell}} \mathcal{I}_{3,\ell}$. One has $\mathcal{I}_{2,\ell} \subset \mathcal{I}_{3,\ell}$ with equality iff. φ_{ℓ} acts semi-simply on $\mathcal{H}^1_{\mathbb{Q}_{\ell}}$.

Theorem (Trihan-Yasuda (2014))

The ℓ -parity conjecture for abelian varieties is true over global function fields for any prime ℓ . In other words,

$$dim_{\mathbb{Q}_\ell}\,\mathcal{I}_{2,\ell}\equiv dim_{\mathbb{Q}_\ell}\,\mathcal{I}_{3,\ell}\quad mod\ 2.$$

Overview of proof

Trihan and Yasuda construct a perfect pairing

$$(\cdot,\cdot)_{\ell}\colon \mathcal{I}_{3,\ell}\times \mathcal{I}_{3,\ell}\to \mathbb{Q}_{\ell}.$$

that is symmetric and compatible with Frobenius action φ_{ℓ} . This comes from the Weil-pairing on $V_{\ell}(A)$.

Thus one can view φ_{ℓ} as a unipotent element of the orthogonal group $O((\cdot,\cdot)_{\ell})$. Linear algebra says that such a unipotent element satisfies

$$\det(-\varphi_\ell) = (-1)^{\dim \ker(1-\varphi_\ell)}.$$

Trihan-Yasuda's more general parity result

The exact same argument to deduce the ℓ -parity conjecture for abelian varieties yields the following result.

Theorem

Let F_ℓ be a smooth $\overline{\mathbb{Q}}_\ell$ -sheaf on an open subset $U\subset C$. Assume that F_ℓ is pure of weight -1 and equipped with a skew-symmetric non-degenerate pairing $F_\ell\times F_\ell\to\overline{\mathbb{Q}}_\ell(1)$. Then

$$r_{an}(F_\ell) \equiv r(F_\ell) \mod 2.$$

Here $r_{an}(F_{\ell})$ is the order of vanishing at s=1 of the L-function $L(U,F_{\ell},s)$, and $r(F_{\ell})=\ker(1-\varphi_{\ell}\mid \mathcal{H}^1_{\mathbb{Q}_{\ell}}(F_{\ell}))$.

In other words, if you have

- A continuous ℓ -adic representation $\tau \colon G_K \to \mathrm{GL}_n(\overline{\mathbb{Q}}_\ell)$ that is unramified outside a finite number of places.
- For all places v where τ is unramified, the eigenvalues of $\tau(\varphi_v)$ have absolute value $\kappa_v^{-1/2}$.
- au has a G_K -equivariant skew-symmetric pairing $au imes au o \overline{\mathbb{Q}}_\ell(1)$.

Then you get a parity-like result for τ .

Application: *l*-parity for twists

Consider a Galois extension F/K with Galois group G and an abelian variety A/K. Then the L-function L(A/F,s) factors into a product of twisted L-functions

$$L(A/F,s) = \prod_{\rho \in \operatorname{Irr}_{\mathbb{C}}(G)} L(A,\rho,s)^{\dim \rho}.$$

The group $A(F) \otimes_{\mathbb{Z}} \mathbb{C}$ is a G-representation, and the analogue of BSD for twists conjectures that

$$\langle \rho, A(F) \otimes_{\mathbb{Z}} \mathbb{C} \rangle = \operatorname{ord}_{s=1} L(A, \rho, s),$$

for a representation ρ of G.

Similarly, $\mathcal{X}_{\ell}(A/F)$ inherits a G-action, and the ℓ -parity conjecture for twists states that

$$(-1)^{\langle \rho, \mathcal{X}_{\ell}(A/F) \rangle} = w(A, \rho).$$

Corollary

The ℓ -parity conjecture for twists of abelian varieties by orthogonal Artin representations holds for all primes $\ell \neq p$.

Proof sketch

Proof:

- **1** Let ρ be an orthogonal Artin representation factoring through a finite Galois extension F/K, with $G = \operatorname{Gal}(F/K)$. View this as a continuous ℓ -adic representation.
- ② Set $W = \operatorname{Res}_K^F A$, the Weil restriction of A/F. This is an abelian variety of dimension $[L \colon K] \cdot \dim A$. The group G acts on W by K-automorphisms, and we can consider $V_\ell(W)$ as a $G \times G_K$ -representation.
- **②** Consider the G_K -representation $\sigma = \operatorname{Hom}_G(\rho, V_\ell(W))$, where G_K acts trivially on ρ .
- Then σ is unramified outside a finite set of places, and when v is unramified, $\sigma(\varphi_v)$ has eigenvalues of absolute value $\kappa_v^{-1/2}$.
- Since ρ is orthogonal it is equipped with a symmetric G_K -equivariant pairing $\rho \times \rho \to \overline{\mathbb{Q}}_\ell$ and so σ has a G_K -equivariant skew-symmetric pairing $\sigma \times \sigma \to \overline{\mathbb{Q}}_\ell(1)$.

Therefore

$$r_{an}(F_{\sigma,\ell}) \equiv r(F_{\sigma,\ell}) \mod 2,$$

where $F_{\sigma,\ell}$ is the sheaf corresponding to σ .

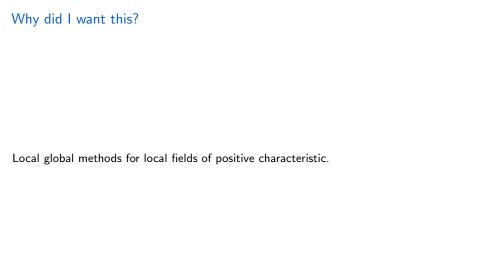
Proof sketch

Proof:

- **6** Claim: $r_{an}(F_{\sigma,\ell}) = \operatorname{ord}_{s=1} L(A, \rho, s)$.
- O Claim: $r(F_{\sigma,\ell}) = \langle \rho, \mathcal{X}_{\ell}(W/K) \rangle$.
- **3** $\mathcal{X}_{\ell}(W/K) \simeq \mathcal{X}_{\ell}(A/F)$ as *G*-representations.

So

$$\operatorname{ord}_{s=1} L(A, \rho, s) \equiv \langle \rho, \mathcal{X}_{\ell}(A/F) \rangle \mod 2.$$



Thank you for your attention!