Elliptic Curves with positive rank

Elliptic Curves in the Cotswolds meeting

Edwina Aylward

March 4, 2025

Not a Brauer relation

Throughout, K/\mathbb{Q} is a quadratic extension.

Definition

Let G be a finite group. A formal sum of subgroups $\Theta = \sum_i n_i H_i$, $n_i \in \mathbb{Z}$ is a K-relation if there exists a representation ρ of G with $\mathbb{Q}(\rho) \subset K$ and

$$\bigoplus_{i} \mathbb{C}[G/H_i]^{\oplus n_i} \simeq \rho \oplus \rho^{\sigma},$$

where σ generates $Gal(K/\mathbb{Q})$.

Example

If $\rho = 0$, Θ is called a *Brauer relation*.

Example

$$G=C_{p}$$

$$\mathbb{C}[G/C_1] \ominus \mathbb{C}[G/G] \simeq \bigoplus_{\tau \in \mathrm{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})} \chi$$

 $\implies C_1 - G$ is a $\mathbb{Q}(\sqrt{p^*})$ -relation.

Use?

 E/\mathbb{Q} elliptic curve, F/\mathbb{Q} finite Galois extension with $G = Gal(F/\mathbb{Q})$.

$$\bigoplus_{i} \mathbb{C}[G/H_{i}]^{\oplus n_{i}} \simeq \rho \oplus \rho^{\sigma} \implies \prod_{i} L(E/F^{H_{i}}, s)^{n_{i}} = L(E, \rho, s) \cdot L(E, \rho^{\sigma}, s).$$

Look at $\operatorname{ord}_{s=1}$. BSD + *L*-value predictions imply that if $\langle \rho, E(F) \otimes_{\mathbb{Z}} \mathbb{C} \rangle = 0$, then

$$\prod_i (C_{E/F^{H_i}} \cdot \mathrm{Reg}_{E/F^{H_i}})^{n_i} \in N_{K/\mathbb{Q}}(K^\times),$$

where $C_{E/F^{H_i}} = \text{product of local Tamagawa numbers} + \text{other local fudge factors}$.

Norm relations test

lf

$$\prod_{i} (C_{E/F^{H_i}})^{n_i} \notin N_{K/\mathbb{Q}}(K^{\times}),$$

then $\operatorname{rk} E/F > 0$.

Norm relations test

Example

Let F/\mathbb{Q} be a finite Galois extension with $G = \operatorname{Gal}(F/\mathbb{Q}) = D_{21}$. For $K = \mathbb{Q}(\sqrt{21})$, have

$$\mathbb{C}[G/C_2] \ominus \mathbb{C}[G/D_7] \ominus \mathbb{C}[G/S_3] \oplus \mathbb{C}[G/G] \simeq \rho \oplus \rho^{\sigma}$$

for a representation ρ of G with $\mathbb{Q}(\rho) = K$ and $\langle \sigma \rangle = \operatorname{Gal}(K/\mathbb{Q})$. Let E/\mathbb{Q} be a semistable elliptic curve \leadsto look at

$$\frac{C_{E/F}c_2\cdot C_{E/\mathbb{Q}}}{C_{E/F}^{D_7}\cdot C_{E/F}s_3}\mod N_{K/\mathbb{Q}}(K^\times).$$

e.g. If E/\mathbb{Q} has split multiplicative reduction at a prime p with residue degree 2 and ramification degree 3, and good reduction at all other ramified primes in F, then

$$\frac{C_{E/F}c_2 \cdot C_{E/\mathbb{Q}}}{C_{E/F}^{D_7} \cdot C_{E/F}^{S_3}} \equiv 3 \mod N_{K/\mathbb{Q}}(K^{\times})$$

 $\implies \operatorname{rk} E/F > 0.$

Enter parity

Theorem

Let F/L be a finite Galois extension of number fields, G = Gal(F/L), and $\Theta = \sum_i n_i H_i$ a K-relation. Let E/L be an elliptic curve ¹. Then

$$\prod_i (C_{E/F^{\mathcal{H}_i}})^{n_i} \equiv \prod_{\tau \in \operatorname{Irr}_{\mathbb{Q}}(G)} \mathcal{C}_{\Theta}(\tau)^{u(E,\chi_{\tau})} \mod N_{K/\mathbb{Q}}(K^{\times}),$$

- χ_{τ} is a \mathbb{C} -irreducible constituent of τ ,
- $u(E, \chi_{\tau}) \in \{0, 1\}$ satisfies $w(E, \chi_{\tau}) = (-1)^{u(E, \chi_{\tau})}$,
- $\mathcal{C}_{\Theta}(\tau)$ is the regulator constant associated to τ .

Corollary

Let F/\mathbb{Q} be a finite Galois extension with $G=\operatorname{Gal}(F/\mathbb{Q})$, and E/\mathbb{Q} an elliptic curve 1 . If the norm relations test predicts $\operatorname{rk} E/F > 0$, then $w(E,\chi) = -1$ for some irreducible representation χ of G.

Parity conjecture for twists:

$$(-1)^{\langle \chi, E(F) \otimes_{\mathbb{Z}} \mathbb{C} \rangle} = w(E, \chi)$$

 χ is a subrep. of $E(F) \otimes_{\mathbb{Z}} \mathbb{C}$

ave semistable reduction at primes above 2 and 3 Edwina Avlward

Regulator constants

Given a group G and K-relation Θ , one can associate to a rational representation τ of G its regulator constant $\mathcal{C}_{\Theta}(\tau) \in \mathbb{Q}^{\times}$. It's value in $\mathbb{Q}^{\times}/N_{K/\mathbb{Q}}(K^{\times})$ is independent of any choices in the definition.

Regulator constants were introduced by Tim and Vladimir for the case where Θ is a Brauer relation. These are purely group-theoretic constants.

Example

Let $G=D_{21}$, with $\mathbb{Q}(\sqrt{21})$ -relation $\Theta=C_2-D_7-S_3+G$. The irreducible rational representations of G are $\{\mathbb{1}, \varepsilon, \sigma_3, \sigma_7, \sigma_{21}\}$. The regulator constants are

$$\mathcal{C}_{\Theta}(\mathbb{1}) \equiv \mathcal{C}_{\Theta}(\epsilon) \equiv \mathcal{C}_{\Theta}(\sigma_3) \equiv 1, \quad \mathcal{C}_{\Theta}(\sigma_7) \equiv \mathcal{C}_{\Theta}(\sigma_{21}) \equiv 3 \mod N_{\mathbb{Q}(\sqrt{21})/\mathbb{Q}}(\mathbb{Q}(\sqrt{21})^{\times}).$$

Thus

$$\frac{C_{E/F}c_2\cdot C_{E/\mathbb{Q}}}{C_{E/F}s_3\cdot C_{E/F}^{D_7}}\equiv 3^{u(E,\chi_{21})+u(E,\chi_7)}\mod N_{\mathbb{Q}(\sqrt{21})/\mathbb{Q}}(\mathbb{Q}(\sqrt{21})^\times),$$

where χ_{21} is a faithful \mathbb{C} -irreducible representation of G, and χ_7 is the lift of a faithful \mathbb{C} -irreducible representation of the D_7 -quotient of G.

norm relations test predicts
$$w(E, \chi_{21}) = -1$$
 or $w(E, \chi_7) = -1$, (but not both).

The End

Thank you!