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Introduction
Let p be a prime. The local reciprocity map

ρQp : Q×p → Gal(Qab
p /Qp)

of local class field theory establishes a bijection between finite abelian Galois extensions F/Qp and
finite index subgroups of Q×p , given by mapping F to its norm subgroup NF/Qp(F×) ⊂ Q×p . Thus
there is a correspondence between characters of Gal(F/Qp) and characters of Q×p that are trivial
on NF/Qp(F×). The image of Q×p under ρQp is isomorphic to the abelianization W ab

Qp of the Weil
group WQp , which is a dense subgroup of the absolute Galois group GQp . Therefore we also have the
following correspondence{

characters χ : Q×p → C×
}
↔
{
characters ψ : WQp → C×

}
.
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The local Langlands conjecture (LLC) generalizes this from Q×p = GL1(Qp) to reductive groups over
local fields. Let G be a split connected reductive group over a local field k. The LLC predicts that
there is a finite-to-one map{

irreducible discrete series
representations of G(k)

}
→
{

Langlands parameters
ϕ : Wk × SL2(C)→ Ĝ

}
.

The left hand side consists of certain complex representations of G(k). On the right hand side, we
consider homomorphisms fromWk×SL2(C) instead of fromWk as in the GL1(k) case, and we replace
C× by Ĝ, which is a complex Lie group with dual root datum to that of G.

The LLC has been proven for general linear groups and in many cases for classical groups. Vaguely,
to establish a correspondence, one finds all the irreducible discrete series representations of G(k) and
then proves that these correspond to Langlands parameters in a unique way. Unfortunately, this is
not always explicit.

In this report we focus on an explicit instance of the local Langlands correspondence, which was
set up by Gross and Reeder in [GR10] and later shown to be a correspondence by Kaletha in [Kal13].
This correspondence is between simple supercuspidal representations and simple wild parameters.
Simple supercuspidal representations are a class of representations characterized by their construction
through compact induction from characters of open compact subgroups, while simple wild parameters
are specific types of Langlands parameters that exhibit wild ramification.

We adopt a hands-on approach to showcasing the theory by working it out explicitly for SL2(Qp).
The main calculations of this report are devoted to computing the simple wild parameters and simple
supercuspidal representations for SL2(Qp), and then trying to match them up.

We hope that this report provides an illuminating example of the LLC, where one can really see and
understand the objects that match up. In addition, it provides an example of the correspondence that
can be understood by the reader who is largely unfamiliar with the local Langlands correspondence.

Layout of report
This report introduces the theory of simple supercuspidal representations and simple wild parameters,
as well as introducing necessary background material in order to compute these objects for our case
of interest SL2(Qp).

In the first section, we describe the ramification groups of the Galois group of an extension of local
fields and discuss their properties. We define a numerical invariant known as the Swan conductor
of a representation of a local Galois group. We review local class field theory and briefly discuss
Weil-Deligne representations.

In the second section, we define Langlands parameters. We discuss different types of Langlands
parameters and focus on simple wild parameters, whose definition involves the Swan conductor. We
then compute all simple wild parameters for SL2(Qp) for varying primes p.

In the following section, we introduce some Bruhat-Tits theory which allows us to consider special
subgroups of p-adic groups known as parahoric subgroups. These become relevant in the construction
of simple supercuspidal representations, which we discuss in §4. We detail the construction, and then
compute these representations for SL2 over unramified extensions of Qp.

In the last section, we discuss the local Langlands conjecture, focusing on our particular case. We
describe the so-called L-packets of our simple supercuspidal representations for SL2(Qp), and consider
the correspondence over the quadratic unramified extension Qp2 of Qp to understand how to match
our simple supercuspidal representations with simple wild parameters.
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1 Local Galois theory

1.1 Local fields and class field theory
In this section we recall some concepts about ramification theory of local fields and local class field
theory that will be useful in later calculations. We also define the swan conductor. A good reference
is [Iwa86].

Throughout this section, we let k be a non-archimedean local field of characteristic zero, with
residue characteristic p. Let k have normalized discrete valuation vk, ring of ideals Ok, maximal ideal
pk, and residue field fk = Ok/pk of order q. Choose a uniformizer $ ∈ Ok such that vk($) = 1.

1.1.1 Ramification groups and Swan conductors

See [Ser79, Chapter IV] for more details on ramification groups.
Let F/k be a finite Galois extension, with H = Gal(F/k). Let vF , OF , pF , fF be defined as

above for F . In particular, vF (x) = eF/k · vk(x) for x ∈ k, where eF/k is the ramification degree. Let
$F be a uniformizer of F . The lower ramification groups provide a filtration of H depending on the
ramification of the extension.

Definition 1.1 (Lower ramification groups). Let s ∈ R≥−1. Define subgroups Gs(F/k) ⊂ H by

Gs(F/k) = {σ ∈ G | ∀x ∈ OF , vF (σ(x)− x) ≥ s+ 1}.

When it is clear by context, we will commonly denote these groups by Gs.

Observe that, since the valuation on F is discrete and normalized, Gs = Gdse, so the values only
change at integers. One has that G−1 = Gal(F/k).

Definition 1.2 (Inertia and wild inertia subgroups). The subgroup

IF/k := G0 = {σ ∈ Gal(F/k) : ∀x ∈ OF , σ(x) ≡ x (mod pF )}

is the inertia subgroup. This is the kernel of the map H → Gal(fF / fk) surjecting to the Galois group
of the residue fields. The subgroup G1 is the wild inertia subgroup.

One also has that IF/k = Gal(F/k′) where k′ is the maximal unramified subextension of F/k.
Thus if IF/k = {1} then F/k is unramified. We say that F/k is tamely ramified if p - eF/k, which is
equivalent to having G1 = {1}. Otherwise, it is wildly ramified. One has G1 = Gal(F/k′′) where k′′/k
is the maximal tamely ramified subextension of F/k.

For s ≥ 1, Gs is the kernel of the action of G0 on OF /ps+1
F . Therefore each Gs is normal in G0,

and we obtain a finite filtration of G by normal subgroups:

G = G−1 ≥ G0 ≥ G1 ≥ · · · ≥ Gc  Gc+1 = 1,

with c ∈ Z. The following proposition details the order of the quotient groups in this filtration.

Proposition 1.3 ([Ser79, Ch IV §2, Corr 1, 2]). Let F/k be a finite Galois extension, with ramification
index eF/k and residue degree fF/k.

1. The quotient G−1/G0 is isomorphic to Gal(fF / fk). Thus it is cyclic of order fF/k.

2. The quotient G0/G1 is cyclic of order prime to p.

3. If Gj 6= 1, then Gj/Gj+1 is an elementary p-group.

The lower ramification groups behave well with respect to subgroups of G.
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Proposition 1.4 ([Ser79, Ch IV §1 Proposition 2]). Let L/F/k be finite extensions of non-archimedean
local fields, and let L/k be Galois. Then for s ∈ R≥−1 one has

Gs(L/F ) = Gs(L/k) ∩Gal(L/F ).

On the other hand, they do not behave well with respect to taking quotients. One remedies this
by defining the upper ramification groups, which are a renumbering of the lower ones. They are also
relevant to us as they appear in some statements of local class field theory.

Let F/k be as above. To define the upper ramification groups, first define φF/k : R≥−1 → R by

s 7→
∫ s

0

1

[G0 : Gt]
dt.

By convention, for t = −1 we let [G0 : Gt] = [G−1 : G0]−1, and for −1 < t ≤ 0, [G0 : Gt] = 1. More
explicitly, if m ≤ s < m+ 1, then

φF/k(s) =

{
s m = −1,

1
|G0| (|G1|+ · · ·+ |Gm|+ (s−m)|Gm+1|) m ≥ 0.

Note φF/k is continuous and strictly increasing, therefore we can define an inverse ψF/k, which is
also strictly increasing. We use this inverse function to define the upper ramification groups.

Definition 1.5 (Upper ramification groups). Let F/k be as above. For s ∈ R≥−1, define

Gs(F/k) = GψF/k(s)(F/k).

Again, we also denote these by Gs when the extension referred to is clear.

Example 1.6. Let F/k be a degree p extension with Gal(F/k) = Cp. Suppose that the lower
ramification groups are G0 = Cp, G1 = Cp, G2 = C1. Then the graph of φF/k is

s

φF/k(s)

-1 0 1 2

-1

0

1
1 + 1/p

from which one can read off ψF/k and compute that Gs = Cp for −1 ≤ s ≤ 1 and Gs = C1 for s > 1.

As promised, the upper ramification groups behave nicely with respect to quotients.

Proposition 1.7 ([Ser79, Ch IV §3 Lemma 5]). Let L/F/k be an extension of non-Archimedean local
fields such that L/k and F/k are Galois. Let J = Gal(L/F ). Then

Gs(F/k) = Gs(L/k)J/J.

We say that there is an upper ramification break at v if Gv 6= Gv+ε for all ε > 0. The following
theorem says that in the case of abelian extensions, these breaks can only occur at integers.

Theorem 1.8 (Hasse–Arf, [Ser79, Ch V §7 Theorem 1]). If Gal(F/k) is abelian and v is a ramification
break, then v is an integer. In other words, if Gi 6= Gi+1, then φF/k(i) is an integer.
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The lower ramification groups appear in the definition of the Swan conductor of a representation.
This will be an important numerical invariant of a representation in later sections. Let F/k be a finite
Galois extension of k.

Definition 1.9 (Swan conductor). The Swan conductor of a finite-dimensional representation ρ : H →
GL(V ) of H = Gal(F/k) is

sw(ρ) =

c∑
i=1

1

[G0 : Gi]
·
(
dimV − dimV Gi

)
,

where Gi denote the lower ramification groups of H, and c ∈ Z is such that Gc+1 = {1}.

If G1 acts trivially on V , then sw(ρ) = 0. In this sense the Swan conductor measures the action
of wild inertia. It turns out that the Swan conductor is an integer.

Theorem 1.10 (Artin, [Ser79, Ch VI, §2 Theorem 1’]). For any finite-dimensional representation
ρ : H → GL(V ), sw(ρ) is an integer.

1.1.2 Local class field theory

The following results of local class field theory are expanded upon in [Iwa86, Chapter 7]. Firstly, we
recall the structure of the multiplicative group k×.

Proposition 1.11 ([Iwa86, §2.2]). The multiplicative group k× has a canonical decomposition

k× ' 〈$〉 × µq−1 × (1 + pk),

where q = | fk | is the order of the residue field, and µq−1 denotes the (q − 1)-th roots of unity in k.
This decomposition depends on $.

An extension F/k is called abelian if it is Galois and Gal(F/k) is an abelian group. As the
compositum of abelian extensions is abelian, there exists a maximal abelian extension of k which we
denote by kab. Recall that for a Galois extension F/k, FrobF/k ∈ Gal(F/k) is any element that maps
to the Frobenius element in Gal(fF / fk) given by x 7→ x| fk | for x ∈ fF . In particular this element
is unique when k′/k is unramified and abelian. The main statement of local class field theory is the
following:

Theorem 1.12 (Local Arin reciprocity, [Iwa86, Theorem 7.1]). There exists a unique homomorphism
ρk : k× → Gal(kab/k) satisfying the following properties:

1. For any uniformizer $ ∈ k, ρk($)|k′ = Frobk′/k for any unramified extension k′/k.

2. If F/k is finite abelian, then ρk induces an isomorphism

ρF/k : k×/NF/k(F×)
'−→ Gal(F/k).

We call a subgroup N ⊂ k× a norm group if N = NF/k(F×) for some finite abelian extension F/k.
The next proposition states that abelian extensions correspond to finite index subgroups of k×.

Proposition 1.13. Let k be a local field of characteristic zero. Then every finite index subgroup of
k× is a norm group and there is an inclusion-reversing bijection

{ finite abelian extensions of k× } ↔ { finite index subgroups of k× }

given by sending F/k to NF/k(F×) ⊂ k×.
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One can also describe the images of the higher unit groups (1 + pik) via the upper ramification
groups.

Theorem 1.14 ([Iwa86, Theorem 7.12]). Let F/k be a finite abelian extension and ρF/k : k×/NF/k(F×)→
Gal(F/k) the isomorphism induced by the Artin map ρk. Then one has

Gs(F/k) = ρF/k(1 + pik), for i− 1 ≤ s ≤ i, i ∈ Z≥0.

We will use the following lemma in later sections to show when a tower of Galois extensions is
Galois.

Lemma 1.15. Let L/k be Galois, and F/L an abelian Galois extension. If σ
(
NF/L(F×)

)
= NF/L(F×)

for every σ ∈ Gal(L/k), then F/k is Galois.

Proof. To show that F/k is Galois, we need to show that there are [F : k] k-automorphisms of F .
There are [F : L] L-automorphisms of F since F/L is Galois. If every k-automorphism of L extends
to a k-automorphism of F , then we have enough k-automorphisms. Write F = L[x]/(P (x)) where
P ∈ L[x] is irreducible. Let F ′ = L[x]/(σ(P (x))), where σ(P (x)) ∈ L[x] is the polynomial obtained
by applying σ to the coefficients of P (x). Let σ : F → F ′ be the natural map.

We show that σ(NF/L(F×)) = NF/L(F×) =⇒ F ′ = F . Since F ′ ' F , it is clear that F ′/L
is Galois with Gal(F/L) ' Gal(F ′/L). Hence F ′/L is abelian. We claim that σ(NF/L(F×)) =
NF ′/L(F ′×). Recall the Artin map ρL : L× → Gal(Lab/L) is such that ker(ρL|F ′) = NF ′/L(F ′×). Let
σ(x) ∈ σ(F ) and y ∈ NF/L(F×). Then

ρL(σ(y))(σ(x)) = σ · ρL(y) · σ−1(σ(x))
= σ · ρL(y)(x)
= σ(x)

where the first equality is by [Iwa86, §6.3, Theorem 6.11]. Thus σ(NF/L(F×)) ⊂ NF ′/L(F ′×). Con-
versely, if x ∈ NF ′/L(F ′×), then

ρL(x)|σ(F ) = Id =⇒ σ · ρL(σ−1(x)) · σ−1|σ(F ) = Id =⇒ σ−1(x) ∈ NF/L(F×)

so x ∈ σ(NF/L(F×)). By our assumption, F and F ′ have the same norm groups so must in fact be
equal by Proposition 1.13. Hence σ extends to a k-automorphism of F .

1.2 Weil-Deligne representations
One side of the local Langlands correspondence is phrased in terms of Weil-Deligne representations,
which we introduce in this section. We use [Roh94, §1] as a reference for the content on the Weil
group.

Let k be as before, and consider a Galois extension F/k (not necessarily finite). Let k′ be the
maximal unramified subextension so that IF/k = Gal(F/k′). Then there is a short exact sequence

1→ IF/k → Gal(F/k)
π−→ Gal(fF / fk)→ 1,

where π is the surjection to the Galois group of residue fields. Let FrfF / fk ∈ Gal(fF / fk) be the
Frobenius automorphism given by x 7→ xq.

Definition 1.16. The Weil group for F/k is W (F/k) = π−1
(
〈FrfF / fk〉

)
⊂ Gal(F/k).

In the case where F = k for a fixed choice of separable closure of k, let knr denote the maximal
unramified subextension and Ik = Gal(k/knr) the inertia subgroup of Gk = Gal(k/k). Let ktame be the
maximal tamely ramified subextension of k/k, and define the wild inertia subgroup I+ = Gal(k/ktame).
This is a normal subgroup of Ik. We define theWeil group of k to beWk = W (k/k). Let Fr ∈ Gal(k/k)
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denote an element such that π(Fr) is the Frobenius automorphism in Gal(fk / fk). Then the short exact
sequence

1→ Ik →Wk
π−→ 〈π(Fr)〉 → 1

is split due to the choice of Fr, so that Wk = 〈Fr〉n Ik.
We endow Wk with the weakest topology such that Ik is an open subgroup, where Ik is equipped

with its subspace topology inherited from Gk. We also require that left multiplication by Fr is a
homeomorphism, making WK a topological group. Then the identity in Wk has a neighbourhood
basis consisting of open subgroups of Ik. The open subgroups of finite index in Wk are the subgroups
Wk ∩Gal(k/F ), where F runs over finite extensions of k in k.

Proposition 1.17. The Weil group Wk satisfies the following properties

1. Wk is dense in Gk,

2. If F/k is a finite subextension, W (k/F ) = Wk ∩Gal(k/F ),

3. If F/k is a finite subextension, Wk/W (k/F ) ' Gal(F/k).

Having defined the Weil group, we can now describe the image of the local Artin map.

Theorem 1.18 (Local Artin reciprocity contd.). The homomorphism ρk : k× → Gal(kab/k) as in
Theorem 1.12 is a homeomorphism onto its image, which is W (kab/k) 'W ab

k .

To define a representation of Wk one needs to ensure that it is continuous.

Definition 1.19. A representation of the Weil group is a continuous homomorphism φ : Wk → GL(V ),
where V is a finite dimensional C-vector space.

We say that φ is unramified if φ|Ik is trivial, and ramified otherwise. We say that φ is tamely
ramified if φ|I+ is trivial, and wildly ramified otherwise.

Remark 1.20. The requirement that φ is continuous implies that φ must be trivial on an open
subgroup of Ik (one argues this by using the fact that GL(V ) has no nontrivial subgroups in a
neighbourhood of the identity). In fact, a homomorphism φ : Wk → GL(V ) is a representation if and
only if it is trivial on an open subgroup of Ik. Since open subgroups of Ik have finite index, this
implies that φ(Ik) is finite.

If V is one-dimensional, call φ a character. Then φ necessarily factors through W ab
k , and we may

identify φ as a character on k× via the topological Artin isomorphism

k× 'W ab
k

as in Theorem 1.18. In this case, one usually normalizes ρk by requiring that ρk($)|knr = Fr−1,
contrary to Theorem 1.12.

Example 1.21. Consider the character ω : Wk → C×, with ω(Ik) = 1 and ω(Fr) = q−1. This
corresponds to the character of k× given by x 7→ |x|k. Indeed, |$|k = q−1, and |O×k | = 1, where O×k
corresponds to Ik under the Artin map.

To define Weil-Deligne representations we need to consider a bigger group.

Definition 1.22. The Weil-Deligne group of k is Wk × SL2(C) equipped with the product topology.

Definition 1.23 (Weil-Deligne representations). Let G be a complex Lie group with reductive identity
component G0. A Weil-Deligne representation of Wk × SL2(C) is a G0-conjugacy class of homomor-
phisms ϕ : Wk × SL2(C) → G such that ϕ|Ik is continuous, ϕ|SL2(C) is a homomorphism of algebraic
groups over C, and ϕ(Fr) is semisimple.
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We call a Weil-Deligne representation ϕ unramified/ramified or tamely ramified/wildly ramified
etc. depending on the type of ϕ|Wk

.

Remark 1.24. This is the viewpoint of Weil-Deligne representations that is often used for the local
Langlands correspondence. A Weil-Deligne representation can also be viewed as a pair (φ,N) where
φ : Wk → GL(V ) is a representation ofWk and N is a nilpotent endomorphism of V satisfying a certain
compatibility condition with φ. For more details on Weil-Deligne representations more generally, one
can consult [Roh94]. The equivalence of different definitions of Weil-Deligne representations is also
discussed in [GR10, §2.1]

2 Langlands parameters
We can now introduce Langlands parameters, which in our case are Weil-Deligne representations that
map to the dual group of a p-adic group. We use [GR10, §3] as a reference.

Let k be a finite extension of Qp. Consider a p-adic group G(k) where G is a connected semisimple
algebraic group over k. In addition we assume that G is split over k, i.e. that G has a maximal torus
defined over k. Fix a maximal torus T ⊂ G defined over k. Then G is determined up to isomorphism
over k by its root datum

(X, X̂,R, R̂)

where X = X∗(T ) = Hom(T,Gm) denotes the set of characters of T , X̂ = X∗(T ) = Hom(Gm, T )
denotes the set of co-characters of T , R consists of the roots of T , and R̂ the co-roots of T .

The dual root datum (X̂,X, R̂, R) then defines a unique connected reductive group Ĝ over C
known as the dual group, and we let Ĝ = Ĝ(C). We take this group over C because later as part of
the local Langlands correspondence we will compare these parameters to complex representations of
G.

Example 2.1. The following table gives the dual group of some classical semisimple groups.

G GLn SLn PGLn Sp2n SO2n+1 SO2n

Ĝ GLn PGLn SLn SO2n+1 Sp2n SO2n

Definition 2.2 (Langlands parameter). Let G be a connected semisimple algebraic group over k. A
Langlands parameter for G is a Weil-Deligne representation ϕ : Wk × SL2(C) → Ĝ as in Definition
1.23.

We say two parameters ϕ, ϕ′ are equivalent if they are Ĝ-conjugate, that is there exists an element
g ∈ Ĝ such that ϕ(x) = g · ϕ′(x) · g−1 for all x ∈Wk × SL2(C).

Definition 2.3 (Discrete Langlands parameter). Let Aϕ denote the centralizer of ϕ(Wk × SL2(C))

in Ĝ. Then ϕ is discrete if Aϕ is finite.

Remark 2.4. For general groups, a Langlands parameter maps to the Langlands dual group LG of
G. However because we have assumed that G is split over k, we may take LG = Ĝ.

Remark 2.5 (Discrete parameters have finite image on Wk). As described in Remark 1.20, if ϕ
is a Langlands parameter then ϕ(Ik) is finite. Since ϕ(Fr) normalizes ϕ(Ik), some power ϕ(Fr)n

centralizes ϕ(Ik). Thus if Aϕ is finite it follows that ϕ(Fr) has finite order, and so ϕ(Wk) is finite.
The structure of Wk then implies that ϕ(Wk) ' Gal(F/k), where F/k is a finite Galois extension.
Explicitly F = (k)ker(ϕ|Wk ). In particular ϕ(Ik) = G0(F/k) and ϕ(I+

k ) = G1(F/k), so the ramification
of ϕ depends on that of F/k.

Example 2.6 (Principal parameter, [GR10, §3.3]). There is an important discrete parameter called
the principal parameter, denoted by ϕ0. This parameter is such that ϕ0|Wk

is trivial, and ϕ0(( 1 1
0 1 )) is

unipotent in Ĝ. It is obtained from a choice of pinning in Ĝ. This has centralizer equal to the center
Ẑ of Ĝ and appears in the statement of the formal degree conjecture.
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2.1 Simple wild parameters
Suppose that ϕ : Wk × SL2(C)→ Ĝ is a discrete Langlands parameter for G(k). Consider the adjoint
representation Ad: Ĝ→ GL(ĝ) of Ĝ on its Lie algebra ĝ and take the composite

Wk × SL2(C)
ϕ−→ Ĝ

Ad−−→ GL(ĝ).

Let ĝN denote the subspace of ĝ fixed by Ad(ϕ(( 1 1
0 1 ))). As ϕ(Wk) commutes with ϕ(SL2(C)), ĝN is

invariant under the action ofWk. We let ĝIN denote the subspace of ĝN fixed by Ik. Since Ik is normal
in Wk, ĝIN is preserved by the action of ϕ(Fr). We define the L-function of ϕ as the determinant of
an operator on ĝIN .

Definition 2.7. The adjoint L-function of a discrete parameter ϕ is given by

L(ϕ, ĝ, s) = det(I−q−sϕ(Fr) | ĝIN ).

We also introduce the adjoint gamma value of a discrete parameter, which appears in the formal
degree conjecture in §5.

Definition 2.8. The adjoint gamma value of a discrete parameter ϕ is given by

γ(ϕ) =
L(ϕ, ĝ, 1) · ε(ϕ, ĝ, 0)

L(ϕ, ĝ, 0)
,

where ε(ϕ, ĝ, s) is the epsilon factor associated to the representation Ad ◦ϕ (see [GR10, §2.2]).

Note that Ad ◦ϕ defines a finite-dimensional complex representation of H = Gal(F/k), where
F = (k)kerϕ|Wk . Thus one can define the Swan conductor of this representation of H as in Definition
1.9, which we denote by sw(ϕ). This is known as the adjoint swan conductor. Note that equivalent
Langlands parameters give rise to the same adjoint Swan conductor.

Example 2.9. If ϕ is tamely ramified, i.e. ϕ(I+) = G1(F/k) = {1}, then sw(ϕ) = 0.

In [GR10, §5], Gross and Reeder give a conjectural inequality involving the adjoint Swan conductor
of a discrete Langlands parameter. This provides a lower-bound for the adjoint Swan conductor, and
they focus on when this bound is sharp. This leads them to the definition of a simple wild parameter.

Definition 2.10. A discrete parameter ϕ : Wk × SL2(C) → Ĝ with F = (k)kerφ|Wk is said to be
inertially discrete if ĝϕ(Ik) = ĝG0(F/k) = {1}.

Lemma 2.11 ([GR10, Lemma 5.3]). Let ϕ : Wk × SL2(C) → Ĝ be a discrete Langlands parameter.
Then ĝϕ(Ik) = {1} if and only if L(ϕ, ĝ, s) = 1. If this is the case, then ϕ(SL2(C)) = 1.

Conjecture 2.12 ([GR10, Conjecture 5.2]). Let ϕ : Wk × SL2(C) → Ĝ be an inertially discrete
Langlands parameter. Then sw(ϕ) ≥ rank ĝ.

Definition 2.13 (Simple wild parameter). A discrete Langlands parameter ϕ : Wk × SL2(C)→ Ĝ is
called a simple wild parameter if ĝϕ(Ik) = {1} and sw(ϕ) = rank ĝ.

Gross and Reeder obtain a rather explicit description of simple wild parameters in the following
case.

Proposition 2.14 ([GR10, Proposition 5.6]). Assume that ϕ : Wk × SL2(C) → Ĝ is an inertially
discrete parameter satisfying sw(ϕ) = rank ĝ, and that the residue characteristic p of k does not divide
the order of the Weyl group of Ĝ. Let H = Gal(F/k) where F = (k)kerϕ|Wk and let G0 ≥ G1 ≥ · · · ≥
Gc+1 = {1} be the lower ramification groups of H. Then

1. ϕ(G1) lies in a unique maximal torus T̂ of Ĝ and ϕ(H) lies in the normalizer N(T̂ ) of T̂ in Ĝ,
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2. The image of G0/G1 in N(T̂ )/T̂ is generated by a Coxeter element of order h, where h is the
Coxeter number of Ĝ,

3. G2 = 1 and G1 is an elementary abelian p-abelian group of order pa, where a is the order of p
in the group (Z/hZ)×,

4. H has upper ramification breaks at 0 and 1/h.

Conversely, a parameter satisfying these properties is a simple wild parameter.

2.2 Simple wild parameters for SL2(Qp)

In this section we compute all simple wild parameters for G = SL2 over k = Qp. In this case
Ĝ = PGL2(C) is a split, connected, reductive group of rank 1. Since the conjectural minimal non-zero
value of the swan conductor of a discrete parameter is equal to the rank of Ĝ, our goal is to classify
all inertially discrete Langlands parameters ϕ : Wk × SL2(C) → Ĝ such that the image of SL2(C) is
trivial, and sw(ϕ) = 1.

Firstly, ϕ(Wk) will be a finite subgroup of Ĝ. The following result, due to Klein, classifies the
finite subgroups of PGL2(C).

Proposition 2.15. [Kle56] The finite subgroups of PGL2(C) are, up to isomorphism,

– the cyclic groups Cn,

– the dihedral groups Dn (with 2n elements),

– the tetrahedral group A4,

– the symmetric group S4,

– the alternating group A5.

Moreover, up to conjugation, all of these groups appear as subgroups of PGL2(C) exactly once.

Since the Swan conductor is defined up to equivalence of Langlands parameters, and these finite
subgroups of PGL2(C) appear only once up to conjugation, we may explicitly choose generators of a
copy of any of these groups in PGL2(C).

Note that Cn cannot be the image of a discrete parameter. Indeed we can take

Cn =

〈(
ζn 0
0 1

)〉
⊂ PGL2(C)

where ζn is a primitive n-th root of unity. This subgroup has centralizer equal to all diagonal matrices,
which in particular is not finite. In addition, as A5 is not solvable, it cannot be the Galois group of
an extension of Qp, hence cannot arise as the image of a discrete parameter either.

To determine the simple wild parameters, we first consider p = 2, and then consider odd primes.

2.2.1 Parameters for SL2(Q2)

A field extension of Qp with Galois group isomorphic to S4 can only occur if p = 2. Indeed in this
case G0, a normal subgroup of S4, is one of C1, C

2
2 , A4, S4. Then G1 is a p-Sylow subgroup of G0, and

normal in G0 which forces p = 2 (by observing that the normal Sylow subgroups of all possible G0

are only 2-Sylow subgroups). A similar argument for Gal(F/k) ' A4 shows that k = Q2 also.
Suppose ϕ(Wk) ' A4. In [Wei74], Weil determines that there is a unique extension of Q2 with

Galois group isomorphic to A4. This is obtained as the splitting field of x4 + 2x3 + 2x2 + 2, with
ramification filtration

A4 ⊃ G0 = C2 × C2 ⊃ G1 = C2 × C2 ⊃ G2 = {1}.
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Consider A4 = 〈g1, g2, g3 | g2
1 = g2

2 = g3
3 = 1, g3g1g

−1
3 = g2, g3g2g

−1
3 = g1g2 = g2g1〉 as a subgroup of

PGL2(C) by setting

g1 =

(
−1 0
0 1

)
, g2 =

(
0 1
1 0

)
, g3 =

(
i 1
−i 1

)
.

This subgroup has finite stabilizer in PGL2(C). One can compute that CĜ(g1)∩CĜ(g2) = 〈g1, g2〉 '
C2 × C2. Since none of these elements centralize g3, one has CĜ(A4) = {I2} is of size one.

Consider the adjoint action of A4 on ĝ = sl2(C). Take a basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

of sl2(C). Then

Ad(g1) =

−1 0 0
0 −1 0
0 0 1

 , Ad(g2) =

0 1 0
1 0 0
0 0 −1

 , Ad(g3) =
i

2

 1 1 − 2
i

−1 −1 − 2
i

1 −1 0

 .

As ĝG0 = ĝG1 = 0, one computes that sw(ϕ) = 3, which is not minimal.
Now suppose that ϕ(Wk) ' S4. Again we follow [Wei74] to describe explicit extensions of Q2 with

Galois group S4. There is a unique extension of Q2 with Galois group S3, given by L = Q2(ζ3,
3
√

2).
Note C2 ×C2 E S4 with quotient group S3. It follows that any extension K of Q2 with Galois group
S4 must contain L as a subfield. In particular, K is a biquadratic extension of L . There are three
of these, up to isomorphism. These are described in [Wei74], and the lower ramification groups are
computed using SageMath [The24]. They are

1. K1 = L(ε, ε′) where ε2 = 3(1 + 3
√

2) and ε′2 = 3(1 + ζ3
3
√

2) . Then Gal(K1/Q2) = S4. One has
G0 = A4, G1 = G2 = G3 = G4 = G5 = C2 × C2, and G6 = 1.

2. K2 = L(ε, ε′), where ε2 = 1 + ( 3
√

2)2 and ε′2 = 1 + ζ2
3 ( 3
√

2)2. Then Gal(K2/Q2) = S4. One has
G0 = A4, G1 = C2 × C2, and G2 = 1.

3. K3 = L(ε, ε′) where ε2 = 3(1 + 3
√

2)(1 + ( 3
√

2)2) and ε′2 = 3(1 + ζ3
3
√

2)(1 + ζ2
3 ( 3
√

2)2). This has
the same lower ramification groups as K1/Q2.

Since the Swan conductor of a Langlands parameter which factors through the Galois group of one
of these extensions only depends on the image of inertia which is A4, we can use the computations
above. One calculates that for a parameter ϕ that factors through Gal(K1/Q2) or Gal(K3/Q2),
sw(ϕ) = 5 is not minimal.

If ϕ factors through Gal(K2/Q2) then sw(ϕ) = 1, hence this is a simple wild parameter. Let
S4 ≤ PGL2(C) be a fixed copy of the symmetric group. Then one obtains a new parameter by setting
ϕ′ = σ ◦ ϕ where σ is an automorphism of S4. If σ does not arise as conjugation by some matrix in
PGL2(C), then ϕ, ϕ′ are distinct non-isomorphic simple wild parameters. But all automorphisms of
S4 are inner, so there is a unique simple wild parameter up to equivalence for SL2(Q2) with image
isomorphic to S4.

2.2.2 Parameters with dihedral image

Now we study the case where ϕ(Wk) ' Dn. Observe that for odd primes, this is the only case where
discrete parameters may occur. We fix the following copy of Dn ≤ PGL2(C).

Dn =

〈
σ =

(
ζn 0
0 1

)
, τ =

(
0 1
1 0

)〉
≤ PGL2(C).
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The centralizer of D2 is D2 and for n > 2 one has CĜ(Dn) = 〈
(

1 0
0 −1

)
〉 of size 2. Let {e, f, h} be the

basis for ĝ as before. Then

Ad(σ) =

ζn 0 0
0 ζ−1

n 0
0 0 1

 , Ad(τ) =

0 1 0
1 0 0
0 0 −1

 .

Thus ĝCn = 〈h〉 and ĝτ = 〈e+ f〉.
Suppose that F/Qp has Galois group Gal(F/Qp) ' Dn. The only cyclic quotients of Dn are

C1, C2. Since G−1/G0 is cyclic, this forces G0 = Cn, or G0 = Dn, or G0 = Dn/2 when n is even (and
> 2). First, we show that the image of inertia cannot be cyclic.

Lemma 2.16. Suppose that ϕ : Wk → Ĝ is a discrete Langlands parameter such that Wk factors
through Gal(F/k) ' Dn, where F/k has inertia subgroup Cn, and F/k is wildly ramified. Then
sw(ϕ) ≥ 2 is not minimal.

Proof. Since F/k is wildly ramified, G1 6= {1} is the unique p-Sylow subgroup of G0. It follows that
n = pjm for some j ≥ 1 and m coprime to p. Therefore

G−1 = Dpjm, G0 = Cpjm, G1 = Cpj , Gi = Cpji , i ≥ 1,

where ji are integers with j1 = j, ji ≤ j. For i ≥ 1, Gi/Gi+1 is an elementary abelian p-group, hence
either C1 or Cp. For i ≥ 1, if Gi is non-trivial, one has dim ĝGi = 1. Therefore

sw(ϕ) =

c∑
i=1

2

[G0 : Gi]
= 2

c∑
i=1

pji

pjm
=

2

mpj

(
c∑
i=1

pji

)
.

Let ai be the number of ramification groups equal to Cpi for i = 1, . . . j. Then to have a minimal
Swan conductor of 1 we need

1 = sw(ϕ) =
2

mpj
·

(
j∑
i=1

aip
i

)
.

Let L be the quadratic unramified subextension of F/k. Then by Proposition 1.3 one has
Gal(F/L) = G0(F/L) = Cpjm, Gi(F/L) = Cpji . In particular the lower ramification groups of
F/L and F/k change at the same indices. Since F/L is cyclic, by Theorem 1.8 one has Gi(F/L) 6=
Gi+1(F/L) =⇒ φF/L(i) is an integer. Thus φF/L(aj), φF/L(aj + aj−1), . . . are all integers. In
particular,

φF/L(aj + aj−1 + · · ·+ a1) =
1

pjm
(ajp

j + · · ·+ a1p) ∈ Z =⇒
j∑
i=1

aip
i ≡ 0 (mod mpj).

Hence sw(ϕ) ≥ 2 cannot be minimal.

We also show that we cannot have a Langlands parameter of dihedral image when k = Q2.

Lemma 2.17. There is no simple wild parameter ϕ : Wk → Ĝ with ϕ(Wk) = Dn and k = Q2.

Proof. Such a Langlands parameter needs to be wildly ramified. We showed above that G0 cannot be
cyclic. Thus G0 is dihedral, and G1 is the unique 2-Sylow subgroup with G0/G1 cyclic of order prime
to 2. This implies that G1 = G0 is a 2-group. Then since ĝDn = 0 for all n ≥ 2, one has

sw(ϕ) =

c∑
i=1

3

[D0 : Di]
= 3 +

c∑
i=2

3

[D0 : Di]

which cannot be equal to 1.
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Assume from now on that k = Qp with p odd. By Lemma 2.16, one must have that ϕ(Ik) is
dihedral and so ĝϕ(Ik) = 0. Therefore ϕ is inertially discrete. The order of the Weyl group of Ĝ is two,
and so we can use Proposition 2.14 to force some properties of such discrete parameters with minimal
Swan conductor. In this case for an inertially discrete parameter to have minimal Swan conductor,
it must factor through Gal(F/k) where G0(F/k)/G1(F/k) = C2, G1(F/k) = Cp and G2(F/k) = C1.
Thus one of the following two cases to occur:

(I) : G−1 = Dp, G0 = Dp, G1 = Cp, G2 = 1,
(II) : G−1 = D2p, G0 = Dp, G1 = Cp, G2 = 1.

If such a parameter ϕ exists, then sw(ϕ) = 1
2 (3 − 1) = 1 is minimal. Thus we need to describe all

extensions with these Galois group and ramification groups.
In either case, there is a subfield L such that Gal(F/L) = Cp is totally ramified. Moreover, since

Gi(F/L) = Gi(F/Qp) ∩Gal(F/L) by Proposition 1.3 one obtains that

G0(F/L) = G0(F/L) = Cp, G1(F/L) = G1(F/L) = Cp, G2(F/L) = G2(F/L) = C1.

as in Example 1.6. First we count the number of such extensions.

Proposition 2.18. Let L/Qp be a finite extension. There are p totally ramified extensions F/L such
that Gal(F/L) = G0(F/L) = G1(F/L) = Cp, G2(F/L) = C1.

Proof. Let β be a choice of uniformizer for L, and suppose that the size of the residue field of L is q.
Write

L× ' 〈β〉 × µq−1 × (1 + P),

where µq−1 is the group of (q − 1)-th roots of unity in L, and P is the maximal ideal of OL.
By Proposition 1.13, the degree p extensions of F/L are in one-to-one correspondence with index

p subgroups of L×. Such an index p subgroup contains L×p = 〈β〉p × µq−1 × (1 +P)p. In addition, if
F/L has the ramification groups as in the proposition, then Theorem 1.14 implies that

ρF/L(O×L ) = Cp, ρF/L(1 + P) = Cp, ρF/L(1 + P2) = 1.

In particular, 1+P2 ⊂ NF/L(F×), and 1+P 6⊂ NF/L(F×). Therefore one has A = 〈β〉p×µq−1× (1+
P2) ⊂ NF/L(F×) and so L×/NF/L(F×) is a quotient of L×/A and extensions correspond to index p
subgroups of L×/A. We have

L×/A ' 〈β〉
〈β〉p

× (1 + P)

(1 + P2)
= 〈β〉 × 〈a〉 = Cp × Cq

where we use · to denote reduction mod A, and a ∈ 1+P generates the quotient (1+P)/(1+P2) ' Fq.
There are p + 1 index p subgroups of the form 〈βia〉 for i = 0, . . . p − 1 and 〈β〉 × 〈ap〉. One cannot
have a ∈ NF/L(F×)/A, as this implies 1 + P ⊂ NF/L(F×). Thus the subgroup 〈a〉 ⊂ L×/A cannot
correspond to an extension, but the other p subgroups correspond to extensions of L satisfying the
conditions of the proposition.

Assume we are in Case (I), so that Gal(F/k) ' Dp. Let L be the quadratic ramified subextension
with Gal(F/L) = Cp. There are 2 possible choices for L up to isomorphism. We show that there is a
unique extension F/L with the required ramification groups and such that F/Qp is Galois.

Proposition 2.19. Let p be an odd prime. Let L/Qp be a quadratic ramified extension. Then there
is a unique extension F/L such that

1. F/L is Galois with Gal(F/L) ' Cp,
2. F/L has ramification groups G0(F/L) = G1(F/L) = Cp, G2(F/L) = C1,

13



3. F/Qp is Galois.

This unique extension has Gal(F/Qp) = G0(F/Qp) = Dp, G1(F/Qp) = Cp, G2(F/Qp) = C1.

Proof. Recall the notation in the proof of Proposition 2.18. There are p extensions that satisfy the
second two conditions of the proposition, whose norm groups map to 〈βia〉, i = 1, . . . p − 1 and
〈β〉 × 〈ap〉 = 〈β〉 in L×/A, where A = 〈β〉p × µp−1 × (1 + P2) . Here our choice of β is such that
L = Qp(β) and Gal(L/Qp) = 〈τ〉 where τ(β) = −β.

By Lemma 2.20, if Gal(L/Qp) preserves NF/L(F×) then F/Qp is Galois. Write a = 1 + u where
u ∈ P. Then τ(a) = 1 − u and a · τ(a) = 1 − u2 ∈ NF/L(F×), so that τ(a) ≡ a−1 mod NF/L(F×).
Suppose that NF/L(F×)/A = 〈βia〉 for i = 1, . . . p = 1. Then

τ(βia) = τ(β)iτ(a) ≡ βia−1 mod NF/L(F×),

since −1 ∈ NF/L(F×). If βia−1 ∈ NF/L(F×), then βia · (βia−1)−1 = a2 ∈ NF/L(F×). But then
a ∈ 〈a2〉 ⊂ NF/L(F×)/A and so a ∈ NF/L(F×), a contradiction. Thus τ(βai) 6∈ NF/L(F×) and so
F/Qp is not Galois for NF/L(F×)/A = 〈βia〉.

On the other hand if NF/L(F×) = 〈β〉 × µp−1 × (1 + P) (corresponding to NF/L(L×)/A = 〈β〉)
then it is clearly preserved by τ . Therefore this norm group corresponds to the unique extension of L
that satisfies the properties of the proposition.

Finally, we compute the lower ramification groups of F/Qp. The extension F/Qp is Galois of order
2p, hence is either abelian or Dp. Note that a generates L×/NF/L(F×), and by above Gal(L/k) acts
on this quotient by inversion. Hence it acts non-trivially (acting by conjugation) on Gal(F/L). Thus
Gal(F/Qp) = Dp. Since L/Qp and F/L are totally ramified, so is F/Qp, and G0 = Dp. The tame
quotient G0/G1 is cyclic of order prime to p, hence G1 = Cp. Since 1 = G2(F/L) = G2(F/Qp) ∩ Cp,
it follows that G2(F/Qp) must be trivial.

Therefore any F/Qp as in Case (I) is unique up to choice of the quadratic ramified subfield. Since
there are two quadratic ramified extensions of Qp for p odd, we obtain that there are two extensions
of Qp with Galois group Dp and required ramification groups.

Thus there are two Galois extensions through which ϕ can factor so that it has image isomorphic
to Dp and is a simple wild parameter. To count the total number of non-equivalent simple wild
parameters with image isomorphic to Dp, we multiply 2 by the number of automorphisms of our fixed
Dp ≤ PGL2(C) that do not emerge as conjugation by an element of PGL2(C). The following lemma
thus shows that there are 2· p−1

2 = p−1 simple wild parameters ϕ up to equivalence with ϕ(Wk) ' Dp.

Lemma 2.20. Let D be the group of automorphisms of Dp ≤ Ĝ that emerge as conjugation by an
element of Ĝ. Then Aut(Dp)/D has order p−1

2 .

Proof. Recall Dp = 〈σ, τ |σp = τ2 = 1, τστσ = 1〉. Then Aut(Dp) = Cp n (Cp)
× where (a, b) ∈

Aut(Dp) is defined by τ 7→ τσa, σ 7→ σb. Conjugation by the element τ iσj is an automorphism of Dp

that sends

τ 7→ τσ2j , σ 7→

{
σ i = 0,

σ−1 i = 1
.

Thus, since multiplication by 2 is injective on Cp, there are 2p distinct inner automorphisms of Dp

and so Out(Dp) has order p−1
2 and is cyclic. It is generated by the automorphism τ 7→ τ , σ 7→ σα, for

α a generator of (Cp)
×/{±1}. We show that this automorphism cannot be obtained by conjugating

by some g ∈ PGL2(C). Indeed, if g fixes τ then g =
(
a b
b a

)
or g =

(
a b
−b −a

)
. Then(

a b
b a

)(
ζp 0
0 1

)
= λ

(
ζαp 0
0 1

)(
a b
b a

)
, λ ∈ C× =⇒
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a(λζp − ζp) = 0,
b(λζαp − 1) = 0,
b(λ− ζp) = 0,
a(λ− 1) = 0,

=⇒ a = b = 0 ⇒⇐,

and we reach a similar conclusion taking g =
(
a b
−b −a

)
.

Now we consider Case (II), where Gal(F/Qp) = D2p. There is a unique normal C2 subgroup of
D2p with D2p/C2 ' Dp. Hence there is a unique subextension k ⊂ F ′ ⊂ F such that Gal(F/F ′) = C2

and Gal(F ′/Qp) = Dp. We claim that F is determined by F ′.

Proposition 2.21. If F/Qp is an extension satisfying the conditions of Case (II) then F = F ′(ζp2−1)
where F ′/Qp is a Galois extension satisfying the conditions of Case (I).

Proof. If F/Qp is as in Case (II), then one can compute that the upper ramification groups have
breaks at 0 and 1/2, with G0(F/Qp) = Dp, G1/2(F/Qp) = Cp, and G1/2+ε(F/Qp) = C1 for ε > 0. Let
F ′ be the unique subextension of F/Qp with Gal(F/F ′) = C2/D2p. By Proposition 1.7, Gs(F ′/Qp) =
Gs(F/Qp)C2/C2 and therefore the upper ramification groups of F ′/Qp have breaks at 0 and 1/2 also
with G0(F ′/Qp) = Dp, G1(F ′/Qp) = Cp and G1/2+ε(F ′/Qp) = C1 for ε > 0.

One has G0(F/F ′) = Gal(F/F ′) ∩ G0(F/Qp) = C2 ∩ Dp = C1. Thus F/F ′ is unramified, and
F ′/Qp is totally ramified. Therefore G0(F ′/Qp) = Gal(F ′/Qp) = Dp. Since G0(F ′/Qp)/G1(F ′/Qp)
is cyclic of order prime to p, G1(F ′/Qp) is either Dp or Cp. However the first case cannot occur, since
then some higher quotient Gi(F ′/Qp)/Gi+1(F ′/Qp) for i ≥ 1 would not be an elementary p-group
(as required by Proposition 1.3). Therefore G1(F ′/Qp) = Cp. Then G2(F ′/Qp) = GφF ′/Qp (s)(F ′/Qp)
with φF ′/Qp(2) = 1

|G0| (|G1|+ |G2|) = 1
2p (p+ |G2|) > 1

2 and so G2(F ′/Qp) = C1.
Therefore F ′/Qp is an extension as in Case (I). Moreover, since F/F ′ is a degree 2 unramified

extension, and the size of the residue field of F ′ is p, it follows that F = F ′(ζp2−1).

Thus an extension satisfying the conditions of Case (II) is determined by its unique subextension
satisfying the conditions of Case (I). Therefore there are two such extensions up to isomorphism.
Once again to get the total number of non-equivalent simple wild parameters with image D2p we need
to count the number of automorphisms of D2p ≤ PGL2(C) that do not come from conjugating by an
element of PGL2(C).

Lemma 2.22. Let D be the group of automorphisms of D2p ≤ Ĝ that emerge as conjugation by an
element of Ĝ. Then Aut(D2p)/D has order p−1

2 .

Proof. Let D2p = 〈σ, τ | σ2p = τ2 = 1, τστσ = 1〉. As in Lemma 2.20, we have that Aut(D2p) =
C2p n (C2p)

× ' C2p n Cp−1. This time, conjugating by σp is the trivial automorphism, so the inner
automorphism group of D2p has order 2p. However

σ1/2 :=

(√
ζp 0

0 1

)
∈ PGL2(C)

defines an automorphism of D2p by acting by conjugation. Therefore D is generated by σ1/2 and
Inn(D2p) and has order 4p, from which it follows that Aut(D2p)/D has order p−1

2 .

In conclusion, we have proved

Proposition 2.23.

1. There is a unique simple wild parameter for SL2(Q2),

2. There are 2 · (p − 1) simple wild parameters for SL2(Qp) where p is any odd prime. There are
p− 1 with image isomorphic to D2p and p− 1 with image isomorphic to Dp.

Later, we will match these to so-called simple supercuspidal representations.
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3 Bruhat-Tits theory
In this section we introduce some elements of Bruhat-Tits theory, defining apartments and buildings
associated to a p-adic reductive group G. The main concept needed from this section is that of
parahoric subgroups. Nonetheless, we hope that the theory introduced provides some context for
where these parahoric subgroups appear.

Once again, k is a finite extension of Qp with normalized discrete valuation vk, ring of ideals Ok,
and maximal ideal pk.

3.1 Apartments
A reference for this section is [TBW79, §1.1].

Let G be simply connected, almost simple, and split over k. Fix a choice of maximal k-split
torus T in G. Let N be the normalizer of T in G and T0 the maximal compact subgroup of T (k).
Let Φ be the set of roots of T in G, with simple roots ∆ = {α1, . . . , αl}. Fixing a Chevalley basis
{eα, hαi | α ∈ Φ, 1 ≤ i ≤ l} for the Lie algebra of G determines for each α ∈ Φ an embedding

xα : k+ ↪→ G(k)

such that dxα(1) = eα. This map satisfies txα(c)t−1 = xα(α(t)c) for t ∈ T (k), c ∈ k. The image
is denoted by Uα and is called the root group associated to α. In particular this is unipotent and
normalized by T (k).

Recall that the Weyl group with respect to T is W = W (G,T )(k) = N(k)/T (k) and can be
identified with the reflections 〈sα | α ∈ Φ〉. We have

W ↪→ Aut(X∗(T )) W ↪→ Aut(X∗(T ))
(nT (k) · χ)(t) = χ(n−1tn) (nT (k) · γ)(x) = n−1γ(x)n

for χ ∈ X∗(T ) and γ ∈ X∗(T ).
Consider the affine Euclidean space under the vector space V = R⊗X∗(T ). Each ψ = α+n where

α ∈ Φ, n ∈ Z determines a non-zero affine linear functional on this affine space given by

x 7→ 〈α+ n, x〉 = 〈α, x〉+ n.

Here 〈α, x〉 is defined by R-linearly extending the pairing X∗(T )×X∗(T )→ Z.

Definition 3.1. The apartment of G associated to T is the affine Euclidean space A under the vector
space V , equipped with a system Ψ = {α + n | α ∈ Φ, n ∈ Z} of affine roots on A, which are the
affine linear functionals defined above.

We get an action of W on A by R-linearly extending the action of W on X∗(T ). The choice
of Chevalley basis determines an origin O ∈ A. This is the unique point in A fixed by sα =
xα(−1)x−α(1)xα(−1) ∈ N(k)/T (k) for all α ∈ Φ. This allows us to view our apartment as a vector
space.

For each affine root ψ = α+n, we define the affine root group Uψ = xα(pnk ) ⊂ G(k). Note that for
n ≥ 0, Uα+n gives a filtration of Uα(Ok) corresponding to the usual filtration of Ok. For ψ = α + n,
define the following hyperplane of A

Hψ = {x ∈ A | 〈x, ψ〉 = 0}.

An alcove is a connected component of {x ∈ A : 〈ψ, x〉 6= 0 ∀ψ ∈ Ψ}. We define sψ : A → A to be the
orthogonal reflection about the hyperplane Hψ. Explicitly

sψ(x) = x− (〈α, x〉 − n)α∨,
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where α∨ ∈ X∗(T ) is the co-root satisfying 〈α, α∨〉 = 2. The group generated by these reflections is
the affine Weyl group

W (Ψ) = 〈sψ : ψ ∈ Ψ〉.

The group W (Ψ) acts simply transitively on the set of alcoves (see [Bou02, Ch V, §3.2]).
The apartment has a natural action by N(k). Firstly we show how T (k) acts on A. Consider a

change of our Chevalley basis by Ad s for s ∈ T (k). Then if ψ = α+ n one has

xα 7→ x′α(y) = xα(α(s) · y),
Uψ 7→ U ′ψ = Uψ+vk(α(s)).

Observe that the terms of the filtration of Uα(Ok) are unchanged, but the index has undergone a
translation. We get a new unique point y ∈ A fixed by x′α(−1)x′−α(1)x′α(−1) for all α ∈ Φ, and we
let s ∈ Aff(A) be translation to the new origin; given by s(x) = x − y for x ∈ A. One can observe
that T (k) acts by translations on A such that, for s ∈ T (k),

s−1Uαs = Uα◦s

where α◦s is the affine root given by 〈α◦s, x〉 = 〈α, s(x)〉 for x ∈ A. In particular, viewing s ∈ Aff(A),
one has s(x) = x+ ν(s) such that 〈α, ν(s)〉 = −vk(α(s)) for all α ∈ Φ.

Example 3.2. Consider k = Qp and G = SL2(k), with Chevalley basis {e, f, h} as in §2.2. Let T be
the diagonal matrices in G. Then Φ = {α,−α}, where α

((
t 0
0 t−1

))
= t2,−α

((
t 0
0 t−1

))
= t−2. One has

x±α : k+ → G(k) with

xα(t) =

(
1 t
0 1

)
, x−α(t) =

(
1 0
t 1

)
.

Then
s−α = sα = xα(−1)x−α(1)xα(−1) =

(
0 −1
1 0

)
and the unique point fixed by sα is 0. Consider s =

(
p 0

0 p−1

)
. Then α(s) = p2 and (−α)(s) = p−2 and

so changing our Chevalley basis by Ad s gives

s′α = x′α(−1)x′−α(1)x′α(−1) =

(
0 −p2

p−2 0

)
.

Our new origin is the unique point fixed by s′α, which is α∨, and so s ∈ Aff(A) translates by −α∨,
i.e. s(x) = x− α∨ for x ∈ A. Observe that s−1Uαs = Uα−2, and 〈α, x− α∨〉 = 〈α, x〉 − 2 for x ∈ A,
so as expected we have α ◦ s = α− 2.

Similarly, N(k) acts on A via affine transformations such that n−1Uαn = Uα◦n holds for all
s ∈ N(k) and α ∈ Φ. This action of N(k) on A identifies N(k)/T0 with W (Ψ); if n ∈ N(k) has image
w in W (Ψ), then nUψn−1 = Uwψ.

Example 3.3. Let G = SL2(Qp), and s =
(

0 −1
1 0

)
. Then s−1Uαs = U−α, s−1U−αs = Uα. Thus

s ∈ Aff(A) acts as s(x) = −x. If s =
(
p 0

0 p−1

)
, then s(x) = x − α∨. If s =

(
0 p

−p−1 0

)
, then

s(x) = −x− α∨.

3.2 Parahoric subgroups and buildings
Having defined introduced the apartment of G associated to a torus T , we can define certain subgroups
of G(k) known as parahoric subgroups and Iwahori subgroups. These are the analogues of parabolic
subgroups and Borel subgroups respectively for complex Lie groups. See [Fin23, §3] for more details.

Definition 3.4. Let G, A, Ψ, k be as before.
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1. For x ∈ A, define Gx(k) = 〈T (Ok), Uψ | ψ ∈ Ψ, 〈ψ, x〉 ≥ 0〉 ⊂ G(k). This is the parahoric
subgroup associated to x.

2. Define G+
x (k) = 〈T (1 + pk), Uψ | ψ ∈ Ψ, 〈ψ, x〉 > 0〉 ⊂ G(k). This is the pro-unipotent radical

of Gx.

3. If x ∈ A is not contained in any hyperplane Hψ of A for all affine roots ψ, then Gx(k) is also
called a Iwahori subgroup.

Parahoric subgroups are compact and open with respect to the topology on G(k) induced by that
of k. More explicitly,

Gx(k) =
〈
T (Ok), Uα

(
p
−b〈α,x〉c
k

)
| α ∈ Φ

〉
, G+

x (k) =
〈
T (1 + pk), Uα

(
p

1−d〈α,x〉e
k

)
| α ∈ Φ

〉
.

Example 3.5. Let G = SL2(Qp). The point x = 1
4α
∨ has 〈α, 1

4α
∨〉 = 1

2 and 〈−α, 1
4α
∨〉 = − 1

2 . Then

Gx = 〈T (Zp), Uα(pZp), U−α(Zp)〉 =

(
Z×p Zp
pZp Z×p

)
and this is an Iwahori subgroup.

In the previous section, we could act on A by N(k) since this normalized our choice of torus. The
group G(k) acts on a bigger object known as the the building associated to G. We use [BT72, §7] as
a reference.

Definition 3.6. Let A be an apartment of G. Define the building B(G, k) = (G(k) × A)/ ∼ where
(g, y) ∼ (h, z) if ∃n ∈ N(k) such that z = n(y) and g−1hn ∈ Gy(k). Here n(·) denotes the action of n
on A.

Remark 3.7. If n ∈ N(k), then we claim that n·Gy(k)·n−1 = Gn(y)(k). Indeed n·T (Ok)·n−1 = T (Ok)
since n ∈ N(k), and we have n · Uψ · n−1 = Uψ◦n−1 for ψ ∈ Ψ. Therefore Uψ ⊂ n ·Gy(k) · n−1 ⇐⇒
〈ψ ◦ n, y〉 = 〈ψ, n(y)〉 ≥ 0 ⇐⇒ Uψ ⊂ Gn(y)(k). Using this property, one can verify that ∼ in
Definition 3.6 defines an equivalence relation.

One has A → B(G, k) via y 7→ (1, y). This map is injective. Indeed if (1, y) ∼ (1, z) for y, z ∈ A,
then ∃n ∈ Gy(k) ∩N(k) with z = n(y). This implies that z = y (see [BT72, §7.4] for details). This
allows us to identify A with its image in B(G, k).

One can define an action of G(k) on B(G, k) by letting G(k) act on G(k)×A by g · (h, y) = (gh, y),
and verifying that this action passes to the quotient B(G, k). Since G is simply connected, we have
the following interpretation of our parahoric groups:

Proposition 3.8 ([BT72, Proposition 7.4.4, Remark 7.1.10]). Let x ∈ A ⊂ B(G, k). Then StabG(x) =
Gx(k).

More generally, we define the following subgroups of G(k).

Definition 3.9. For x ∈ A and r ∈ R≥0, define

Gx,r(k) =
〈
T (1 + p

dre
k ), Uα(p

−b〈α,x〉−rc
k ) | α ∈ Φ

〉
, Gx,r+(k) = ∪s>rGx,s(k).

Observe Gx(k) = Gx,0(k), G+
x (k) = G+

x,0(k). For each x ∈ A we obtain a Moy-Prasad filtration
of G(k) given by {Gx,r(k) | r ∈ R≥0}. If r ≤ s then Gx,s(k) is a normal subgroup of Gx,r(k). In
particular, Gx,r(k) / Gx(k) for all r ≥ 0.

One can also define subgroups Gx,r(k) ⊂ G(k) for any x ∈ B(G, k) and r ∈ R≥0. To do so, find
an apartment A ⊂ B(G, k) containing x. If this is the apartment of a split torus, we can use the
definition above. Else, the definition is slightly different.
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Remark 3.10 (Depth of a representation). In [MP96, Theorem 3.5] Moy and Prasad define the
depth of an irreducible admissible complex representation (π, V ) of G. This is defined in terms of the
subgroups Gx,r(k). The depth ρ(π) ∈ Q≥0 satisfies the property that there exists x ∈ B(G, k) such
that the space of invariants V Gx,ρ(π)+(k) is non-zero and it is the smallest rational number with this
property.

4 Simple supercuspidal representations
This section covers the construction of simple supercuspidal representations, and calculates them for
SL2 over unramified extensions of Qp.

As the name suggests, simple supercuspidal representations are supercuspidal. While one does
not need much knowledge of the representation theory of p-adic groups to follow the construction of
simple supercuspidal representations, we will recall a few facts here. Sources on this topic include
[Fin23, §2.4] and [Car79].

Let k be a finite extension of Qp, and consider a connected, reductive group G over k. Within the
category SmoG(k) of smooth complex representations of G(k), there are discrete series representations.
These are irreducible unitary representations such that their matrix coefficients are square-integrable
with respect to some nonzero invariant measure µ on G(k). A discrete series representation embeds
into the regular representation of G(k) on L2(G(k)); the complex vector space of square-integrable
functions on G(k) with respect to µ.

A certain class of discrete series representations are the supercuspidal representations. These are
discrete series representations whose matrix coefficients have compact support modulo the center Z(k)
of G(k). These embed into the regular representation of G(k) on C∞c (G(k)); the space of functions
on G(k) that are locally constant and compactly supported.

Supercuspidal representations are of particular interest because they are the “building blocks” of
the representation theory of p-adic groups in the following sense.

Theorem 4.1 ([Fin23, Fact 2.4.8]). Let (π, V ) be an irreducible smooth representation of G(k). Then
there exists a parabolic subgroup P ⊂ G with Levi subgroup M and a supercuspidal representation
(σ,W ) of M(k) such that π is a subrepresentation of Ind

G(k)
P (k) σ.

We also recall the notion of a central character of a representation. Let (π, V ) be a discrete series
representation. There is a character ω : Z(k) → C× such that π(z)v = ω(z)v for all v ∈ V and
z ∈ Z(k). This character ω is called the central character of (π, V ).

4.1 Construction of simple supercuspidal representations
In [GR10, §9.2, §9.3], Gross and Reeder give the construction for simple supercuspidal representations,
which we detail here. These are obtained by inducing characters from a certain compact subgroup.
In this section we assume that G is simply connected, almost simple, and split over k.

Let T be a k-split maximal torus of G with associated apartment A as defined in §3.1. Let T0 be
the maximal compact subgroup of T (k). Fix an alcove C in A and a corresponding set of positive
affine roots Ψ+ = {ψ ∈ Ψ: 〈ψ, x〉 ≥ 0 ∀x ∈ C}. Then there is a unique subset Π ⊂ Ψ+ such that
any element of Ψ+ is of the form

∑
ψ∈Π nψ · ψ with nψ ≥ 0. We call elements of Π simple affine

roots. There is a unique point x0 ∈ C on which all simple affine roots take the same value; this is the
barycenter of C. This common value is 1/h, where h is the Coxeter number of G.

As described in §3.2 Gx0
(k) is an Iwahori subgroup, with pro-unipotent radical G+

x0
(k) = Gx0,1/h.

We have
Gx0

(k)/Gx0,1/h(k) ' T (q) = {t ∈ T0 | tq = t},

where q is the size of the residue field of k. The quotient Gx0,1/h(k)
/
Gx0,2/h(k) can be described as

a sum of quotients of root groups as follows.
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Proposition 4.2 ([GR10, Lemma 9.2]). One has the following isomorphism as T0-modules

Gx0,1/h(k)
/
Gx0,2/h(k) '

⊕
ψ∈Π

Uψ/Uψ+1 '
⊕
ψ∈Π

Fq.

Let Z denote the center of G. We construct our supercuspidal representations by inducing certain
characters from the subgroup Z(k)Gx0,1/h(k). We have Z(k)Gx0,1/h(k) = Z(q) × Gx0,1/h(k) where
Z(q) = Z ∩ T (q).

Definition 4.3 (Affine generic characters). An affine generic character is a character χ : Z(k)Gx0,1/h(k)→
C× such that

1. χ is trivial when restricted to Gx0,2/h(k),

2. χ is non-trivial when restricted to Uψ for all ψ ∈ Π.

Let l be the rank of G. Then |Π| = l+ 1. It follows that there are |Z(q)| · (q − 1)l+1 affine generic
characters. As shown in the proof of [GR10, Proposition 9.4], the group T (q)/Z(q) acts freely on the
set of affine generic characters.

The subgroup H(k) = Z(k)Gx0,1/h(k) is compact and open in G(k). For an affine generic character
χ, we define the compactly induced representations

πχ = c-IndG(k)
H(k)χ.

This consists of the space of functions f : G(k)→ C such that

1. f(hg) = χ(h)f(g) for all h ∈ H(k), g ∈ G(k),

2. The support of f is compact mod H(k), i.e. the support of f consists of finitely many left cosets
of H(k) in G(k).

Then G(k) acts on a function f by (g · f)(h) = f(hg). It turns out that these representations are
supercuspidal.

Proposition 4.4 ([GR10, Proposition 9.3]). Let πχ = c-IndG(k)
H(k)χ, where χ is an affine generic

character. Then

1. π is an irreducible supercuspidal representation,

2. Let χ′ be another affine generic character, and πχ′ = c-IndG(k)
H(k)χ

′. Then πχ and πχ′ are equiva-
lent if and only if χ and χ are conjugate by an element of T (q).

We call the representation πχ a simple supercuspidal representation. Since T (q)/Z(q) acts freely
on the affine generic characters, and |T (q)| = (q − 1)l one therefore sees that there are |Z(q)|2(q − 1)
simple supercuspidal representations up to equivalence.

Remark 4.5. Gross and Reeder called these “simple” supercuspidal representations due to their rel-
atively straightforward construction. Later Reeder and Yu ([RY14]) generalized this construction and
defined epipelagic representations, which are certain supercuspidal representations of small positive
depth.

The central character of a simple supercuspidal representation is easy to describe.

Proposition 4.6. Let πχ = c-IndG(k)
H(k)χ be a simple supercuspidal representation. Then the central

character ω : Z(k)→ C× is given by χ|Z(k).

Proof. Consider an element f : G(k) → C of c-IndG(k)
H(k)χ. Let z ∈ Z(k). Then (z · f)(h) = f(hz) =

f(zh) = χ(z)f(h) since z ∈ Z(k) ⊂ H(k). Thus the action by z sends f to χ(z)f and so ω = χ|Z(k).
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4.2 Calculating simple supercuspidals for SL2

In this section we compute the simple supercuspidal representations of SL2 over any unramified ex-
tension of Qp. Let F̃ denote a finite unramified extension of Qp of degree n, with ring of integers O,
uniformizer $, and unique maximal ideal P. Let q = pn be the order of the residue field O/P.

Consider the maximal F̃ -split torus T consisting of diagonal matrices. Let {α,−α} denote the
roots as in Example 3.2. The maximal compact subgroup of T is T0 = T (O×). One has X∗(T )⊗R =
{rα∨ | r ∈ R}. We choose C = (0, 1

2α
∨) as our fundamental alcove. The corresponding simple affine

roots are Π = {α, α0 = 1 − α}. Observe that for x0 = 1
4α
∨ ∈ C, one has 〈α, x0〉 = 〈α0, x0〉 = 1/2.

Thus we consider the following subgroups of G(F̃ ).

Gx0,1/h(F̃ ) =

(
1 + P O
$O 1 + P

)
, Gx0,2/h(F̃ ) =

(
1 + P $O
$2O 1 + P

)
.

Then V = Gx0,1/h(F̃ )/Gx0,2/h(F̃ ) ' Fq × Fq via the map(
a b
$c d

)
mod Gx0,2/h(F̃ ) 7→ (b mod P, c mod P).

There are q2 distinct characters of V . We claim they are all of the form

V
f−→ Fq

Tr−→ Fp → C×

(b, c) 7→ f(b, c) 7→ Tr(f(b, c)) 7→ ζ
Tr(f(b,c))
p ,

where f is a linear functional on V , Tr is the additive trace map Fq → Fp that sends x ∈ Fq to
x+xp + · · ·xpn−1

, and ζp is a primitive p-th root of unity. There are q2 linear functionals on V , given
by f(x,y)(b, c) = xb + yc where x, y ∈ Fq. We claim that the resulting characters of V are distinct.
Indeed, if ζTr(xb+yc)

p = ζ
Tr(x′b+y′c)
p for all b, c ∈ Fq, then one has Tr(xb) − Tr(x′b) = 0 ∈ Fp for all

b ∈ Fq, that is that
∑n−1
i=0 t

pi(xp
i − (x′)p

i

) ∈ Fq[t] has q roots. But this is of degree pn−1 in t, hence
must be identically zero so that x = x′. A similar argument shows that y = y′.

We write χ(x,y) for the character of V corresponding to the linear functional f(x,y). Firstly, assume
that p is odd. Then the centre of SL2(F̃ ) is Z(F̃ ) = {±I2}. Let χ(x,y),± denote the two possible liftings
of the character χ(x,y) to H(F̃ ) = Z(F̃ )Gx0,2/h, where χ(x,y),+(−I2) = 1 and χ(x,y),−(−I2) = −1. For
χ(x,y),± to be an affine generic character, it must be non-trivial when restricted to Uα and Uα0

, which
is equivalent to requiring that xy 6= 0 ∈ Fq. Then the representations

π(x,y),± = c-IndSL2(F̃ )

H(F̃ )
χ(x,y),±

are supercuspidal.
To count the number of simple supercuspidal representations up to equivalence, we count the orbits

of T (q) on the set of affine generic characters. Let t̃ denote the matrix in T (q) with diagonal entries
t, t−1 ∈ µq−1. Then

χt̃(x,y),±

((
a b
$c d

))
= χ(x,y),±

((
a t2b

t−2$c d

))
.

Thus unless t2 = 1, i.e. t̃ ∈ Z(F̃ ), the twist by t̃ is a distinct affine generic character. It follows that
T (q)/Z(q) acts freely on the affine generic characters of H(F̃ ). One can take as orbit representatives

{χsy,+, χsy,−, χny,+, χny,− | y ∈ F×q }

where sy = (1, y), ny = (z, y) for z a fixed non-square in F×q . Thus there are 4(q − 1) equivalence
classes of these simple supercuspidal representations when p is odd, with representatives

{π(1,y),+, π(1,y),−, π(z,y),+, π(z,y),− | y ∈ F×q }.
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Now suppose p = 2. Then Z(q) = {I2} and so H(F̃ ) = Gx0,1/h(F̃ ). Then T (q) acts transitively
on the affine generic characters, and so there are q − 1 simple supercuspidal representations

π(1,y) = c-IndG(F̃ )

Gx0,1/h(F̃ )
χ(1,y), y ∈ F×q

of G(F̃ ) up to equivalence. We record this results of this section for the case of F̃ = Qp.

Proposition 4.7. Let G = SL2.

1. There is a unique simple supercuspidal representation of G(Q2) up to equivalence,

2. For an odd prime p, there are 4(p − 1) simple supercuspidal representations of G(Qp) up to
equivalence.

5 Local Langlands correspondence
We will only focus on the parts of the local Langlands correspondence that are relevant for us. Let G
be a split semisimple group over a non-archimedean local field k. First we define an enhancement of
a Langlands parameter for G.

Definition 5.1 (Enhancement of a discrete Langlands parameter). Given a discrete Langlands param-
eter ϕ : Wk×SL2(C)→ Ĝ, an enhancement of ϕ is an irreducible representation of Aϕ = CentĜ(Imϕ).

Let Π2(G/k) be the set of equivalence classes of irreducible discrete series representations of G(k).
Let L(G/k) be the set of Ĝ-conjugacy classes of pairs (ϕ, ρ) where ϕ : Wk × SL2(C)→ Ĝ is a discrete
parameter and ρ ∈ Irr(Aϕ) is an enhancement of ϕ. The Local Langlands correspondence states the
following.

Conjecture 5.2 (Local Langlands Correspondence (LLC), [GR10, Conjecture 7.1]). Let G be a
connected split semisimple group over k. There exists a bijection

Π2(G/k)→ L(G/k), π 7→ (ϕπ, ρπ)

with the following properties.

1. (Central character) If π, π′ ∈ Π2(G/k) have ϕπ = ϕπ′ then π and π′ have the same central
character.

2. (Supercuspidal packets) For a given discrete parameter ϕ, the following are equivalent

(a) All π ∈ Π2(G/k) with ϕπ = ϕ are supercuspidal,

(b) If ϕπ = ϕ and ρπ = 1 then π is supercuspidal,

(c) ϕ(SL2(C)) = 1.

This conjectural correspondence partitions irreducible discrete series representations into what are
known as L-packets.

Definition 5.3 (L-packet). Let G, k be as above, and let ϕ : Wk × SL2(C) be a discrete parameter.
Then the set

Πϕ(G/k) = {π ∈ Π2(G/k) : ϕπ = ϕ}

is the L-packet associated to ϕ.
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Another part of the LLC is the formal degree conjecture. We state the version reformulated by
Gross and Reeder in [GR10]. This describes the formal degree of a discrete series representation π in
terms of quantities associated to (ϕπ, ρπ), including the adjoint gamma factor of ϕπ. The degree of
π is a numerical invariant associated to π, one can think of it as a replacement of the notion of the
dimension of a finite-dimensional representation. Unfortunately, we cannot explore this any further in
this report, but its consideration was essential for the conjectures of Gross and Reeder in the following
section.

Conjecture 5.4 (Formal degree conjecture, [GR10, Conjecture 7.1]). The formal degree of π ∈
Π2(G/k), with respect to the Euler-Poincaré measure µG is given by

(−1)r(G) degµG(π) =
dim ρπ

|Aϕπ/Ẑ|
· |γ(ϕπ)|
|γ(ϕ0)|

·

where ϕ0 is the principal parameter as in Example 2.6 and r(G) is the rank of G over k.

5.1 LLC for simple supercuspidals and simple wild parameters
Let k be a finite extension of Qp, with residue field of size q. The formal degree conjecture imposes
strict conditions on the Langlands parameters that correspond to simple supercuspidal representations.
Assuming the formal degree conjecture, as well as some base-change relations for parameters, Gross
and Reeder showed the following:

Conjecture 5.5 ([GR10, Proposition 9.4]). Let G be a split simply connected group over k. Assume
that the simple supercuspidal representation π of G(k) corresponds to the pair (ϕπ, ρπ) as in Conjecture
5.2. Then ϕπ is a simple wild parameter.

Moreover if the characteristic p of k does not divide the order of the Weyl group of G, then ϕπ
satisfies the properties of Proposition 2.14 and Aϕπ is abelian with order equal to that of Z(q). In
addition |Z(k)| = |Z(q)|.

Gross and Reeder also conjecture how the simple supercuspidal representations should be parti-
tioned into L-packets. In the case that G is connected, let Gad = G/ZG be the adjoint group of G.
Given t ∈ Gad(k) and a representation π of G(k) let πt be the representation of G(k) given by

(πt)(g) = π(t−1gt), g ∈ G(k).

Then letting (t · π) = πt yields an action of Gad(k) on the representations of G(k).

Conjecture 5.6 ([GR10, §9.5 Remark]). Let G be a split simply connected group over k. The simple
supercuspidal representations of G(k) are partitioned into |Z(q)| · (q − 1) distinct L-packets, each of
cardinality |Z(q)| and consisting of a single Gad(k)-orbit.

Under some assumptions on the residue characteristic of k, in [Kal13] Kaletha constructs a Gad(k)-
orbit of simple supercuspidal representations from a simple wild parameter. In addition he shows that
this Gad(k)-orbit of representations satisfies the expected properties of an L-packet.

Theorem 5.7 ([Kal13, §4, §5]). Let G be a split simply connected group over k and assume that the
characteristic p of k does not divide the order of the Weyl group of G. Let ϕ : Wk × SL2(C)→ Ĝ be a
simple wild parameter. Then there is an explicit way to construct from ϕ a Gad(k)-conjugacy class of
simple supercuspidal representations of size |Z(k)|.

Moreover, there is a bijection between the Gad(k)-orbit of simple supercuspidal representations
obtained and the characters of Aϕ.
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5.2 Showing the correspondence for SL2(Qp)

Let us first consider the case of SL2(Q2). By Proposition 2.23, there is a unique simple wild parameter
ϕ up to equivalence with image isomorphic to S4. This has Aϕ = {1} and so there is only one
enhancement of ϕ given by the trivial representation. On the other hand, by Proposition 4.7 we
proved that there is a unique simple supercuspidal representation π of SL2(Q2) up to equivalence.
Therefore

π ↔ (ϕ, triv)

by the local Langlands correspondence and Conjecture 5.5 .
Now we consider SL2(Qp) for p odd. Then by Proposition 2.23 there are 2(p − 1) simple wild

parameters up to equivalence, half of which have image isomorphic to Dp, and the other half with
image isomorphic to D2p. By Proposition 4.7, there are 4(p− 1) simple supercuspidal representations
of SL2(Qp) up to equivalence. For each simple wild parameter ϕ, we have that Aϕ ' C2, and so there
are two possible enhancements of ϕ. Thus on the level of counting, the 4(p− 1) simple super cuspidal
representations pair up into 2(p−1) L-packets of size two corresponding to our simple wild parameters,
according to the local Langlands conjecture and Conjecture 5.5. The following proposition details the
L-packets.

Proposition 5.8. Consider the correspondence determined by Kaletha as in Theorem 5.7. Then the
L-packets of the simple supercuspidal representations for SL2(Qp) are of the form

{π(1,y),+, π(z,yz−1),+}, {π(1,y),−, π(z,yz−1),−}, y ∈ F×p ,

where z ∈ F×p is a fixed non-square.

Proof. The L-packets are of size 2 = |Z(k)|. Consider the element t =
(√

z 0

0
√
z−1

)
∈ SL2(Qp). Here we

are viewing z ∈ Zp as a Teichmüller lift from Fp. Then the image of t in Gad(Qp) belongs to Gad(Qp).
Indeed, suppose σ ∈ GQp acts non-trivially on

√
z, i.e. σ(

√
z) =

√
z
−1. Then t−1σ(t) = − I2 ∈ Z(Qp),

so that σ(t) ≡ t mod Z(Qp).
We claim that (c-IndG(k)

H(k)χ)t ' c-IndG(k)
H(k)χ

t as representations of G(k) for χ an affine generic
character of H(k). Firstly, one can compute that conjugation by t preserves H(k), therefore χt is also
a character of H(k). The isomorphism is given by sending f ∈ (c-IndG(k)

H(k)χ)t to f t : G(k)→ C, where
f t(g) = f(t−1gt). Then f t ∈ c-IndG(k)

H(k), since if h ∈ H(k) and g ∈ G(k), one has

f t(hg) = f(t−1hgt) = χ(t−1ht)f(t−1gt) = χt(h)f t(h).

Moreover, the action of G(k) is compatible; if g, x ∈ G(k) then

(g · f t)(x) = f t(xg) = f(t−1xgt) = f(t−1xtt−1gt) = (g · f)(t−1xt) = (g · f)t(x).

The inverse map is then given by f 7→ f t
−1

for f ∈ c-IndG(k)
H(k)χ

t. We have χt(1,y),+ = χ(z,yz−1),+ and
so π(1,y),+ and π(z,yz−1),+ lie in the same Gad(Qp) orbit. Since the orbits are of size 2 it follows that
they are as claimed, with the case of non-trivial character shown similarly.

5.2.1 Correspondence over Qp2

To understand how our L-packets match to simple wild parameters, we consider the correspondence
over a quadratic unramified extension ofQp. As detailed in Theorem 5.7, Kaletha constructs an explicit
correspondence between simple wild parameters and Gad(k)-conjugacy classes of simple supercuspidal
representations. Moreover, he proves that the correspondence he constructs has a natural compatibility
with unramified extensions, which we now describe.

Let k be a non-archimedean local field of characteristic zero, and F̃ a finite unramified extension of
k of degree n. Let G be a split simply connected group over k, and such that the residue characteristic
p of k does not divide the order of the Weyl group of G, as in Theorem 5.7.
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Proposition 5.9 ([Kal13, Proposition 6.1]). Let ϕ : Wk → Ĝ be a simple wild parameter for G(k),
and denote by ϕ̃ its restriction to WF̃ . Let π = c-Indχ be a simple supercuspidal representation of
G(k) contained in the L-packet of ϕ.

Let π̃ = c-Indχ̃ be a representation of G(F̃ ), where χ̃ is the affine generic character obtained by
composing χ with the norm map for the action of Gal(F̃ /k) on Z(F̃ )G(F̃ )x,1/h/G(F̃ )x,2/h. Then π̃
is contained in the L-packet of ϕ̃.

We now apply this to G = SL2 with k = Qp and F̃ = Qp2 . Firstly, we consider the restriction of
our Langlands parameters.

Proposition 5.10. Let ϕ : Wk × SL2(C) → Ĝ be a simple wild parameter such that F = (k)kerϕ|Wk

has Gal(F/k) ' Dp. Then there is a unique simple wild parameter ϕ′ such that ϕ̃ = ϕ̃′. In addition
one has F (ζp2−1) = (k)kerϕ′|Wk .

Proof. Since ϕ̃ is discrete, there exists a finite extension K/Qp2 such that K = (k)
kerϕ|WQ

p2 . Then
kerφ ⊂ kerφ|WQ

p2
so that F ⊂ K. Writing Wk = 〈Fr〉 n IQp , we have WQp2 = 〈Fr2〉 × Ik and so

ϕ(Wk) = ϕ(Ik) = ϕ(WQp2 ) since ϕ is totally ramified. Thus Gal(K/Qp2) ' ϕ(WQp2 ) = Dp. Therefore
we have the following diagram of subfields, noting [K : F ] = 2 since [K : Qp] = 4p.

Qp

F Qp2

K

2p 2

2 2p

By multiplicity of ramification degrees, K/F is unramified, hence K = F (ζp2−1), noting that the size
of the residue field of F is p.

In §2.2.2, we computed that there were (p−1)/2 simple wild parameters ϕ′ such that (k)kerϕ′|Wk =
F (ζp2−1). Since F (ζp2−1)/Qp2 is a finite extension, one has

kerϕ′|WQ
p2

= kerϕ′ ∩WQp2 = Gal(Qp/F (ζp2−1)) ∩WQp2 = W (Qp/F (ζp2−1))

by part 2 of Proposition 1.17. Then ϕ′(WQp2 ) ' WQp2/W (Qp/F (ζp2−1)) ' Gal(F (ζp2−1)/Qp2) by
part 3 of Proposition 1.17. Therefore ϕ̃ and ϕ̃′ factor through the same Galois extension. Then there
is a unique ϕ′ up to equivalence such that ϕ̃ = ϕ̃′.

This shows us that the Langlands parameters with image isomorphic Dp pair up with those with
image isomorphic to D2p when we restrict to WQp2 . Since the center of SL2 over Qp2 has size 2, the
L-packets for simple supercuspidal representations of SL2(Qp2) have size 2. Therefore some simple
supercuspidal representations of SL2(Qp) must become equivalent under the above construction which
gives simple supercuspidal representations of SL2(Qp2).

Let χ(x,y),± : Z(Qp)Gx,1/2(Qp)→ C× be an affine generic character for SL2(Qp), with (x, y) ∈ F×2
p .

Let N denote the norm map

N : Z(Qp2)Gx,1/h(Qp2)/Gx,2/h(Qp2) → Z(Qp)Gx,1/h(Qp)/Gx,2/h(Qp)
g 7→ g Fr(g).

Note that this sends(
a b
$c d

)
7→
(

∗ abp + bdp

$(apc+ dcp) ∗

)
≡
(

∗ bp + b
$(c+ cp) ∗

)
mod Gx,2/h(Qp),
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and N(Z(Qp2)) = {I2}. It follows that χ(x,y),± ◦ N is the affine generic character χ(x,y),+ on
Z(Qp2)Gx,1/h(Qp2), viewing (x, y) ∈ F×2

p2 .

Moreover, consider an L-packet of representations {c-IndG(Qp)

H(Qp)χ(1,y),±, c-IndG(Qp)

H(Qp)χ(z,zy−1),±} of

SL2(Qp), where z is a non-square in F×p . Then c-IndG(F̃ )

H(F̃ )

(
χ(1,y),± ◦N

)
and c-IndG(F̃ )

H(F̃ )

(
χ(z,yz−1),± ◦N

)
are equivalent as representations of SL2(Qp2) since z has a square root when viewed in F×p2 , and so
the characters are conjugate by an element of T (q).

Therefore our process of obtaining a simple supercuspidal for SL2(Qp2) from one for SL2(Qp) is a
4− 1 map, sending the SL2(Qp)-representations of the two L-packets

{π(1,y),+, π(z,yz−1),+} ∪ {π(1,y),−, π(z,yz−1),−}

to the simple supercuspidal representation π(1,y),+ of SL2(Qp2). Let ϕ be the Langlands parameter
corresponding to the first L-packet, and ϕ′ the parameter corresponding to the second. By Proposition
5.9, the restriction of these parameters to WQp2 is equal. Therefore by Proposition 5.10 one of these
parameters has image isomorphic to Dp, and the other D2p.

Remark 5.11. One would like to additionally identify which parameter has image Dp or D2p. Un-
fortunately we did not have the time to do this properly. However from further analysis of the process
in [Kal13, §4], it appears that the L-packets with trivial central characters should correspond to
parameters with image Dp, and the L-packets with non-trivial central characters correspond to the
parameters with image D2p.
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